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ORJIP Offshore Wind 
The Offshore Renewables Joint Industry Programme (ORJIP) for Offshore Wind is a collaborative 
initiative that aims to:  

• Fund research to improve our understanding of the effects of offshore wind on the marine
environment.

• Reduce the risk of not getting, or delaying consent for, offshore wind developments.
• Reduce the risk of getting consent with conditions that reduce viability of the project.

The programme pools resources from the private sector and public sector bodies to fund projects that 
provide empirical data to support consenting authorities in evaluating the environmental risk of 
offshore wind. Projects are prioritised and informed by the ORJIP Advisory Network which includes 
key stakeholders, including statutory nature conservation bodies, academics, non- governmental 
organisations and others.  

The current stage is a collaboration between the Carbon Trust, EDF Energy Renewables Limited, 
Ocean Winds UK Limited, Equinor ASA, Ørsted Power (UK) Limited, RWE Offshore Wind GmbH, Shell 
Global Solutions International B.V., SSE Renewables Services (UK) Limited, TotalEnergies OneTech, 
Crown Estate Scotland, Scottish Government (acting through the Offshore Wind Directorate and the 
Marine Directorate) and The Crown Estate Commissioners.  

For further information regarding the ORJIP Offshore Wind programme, please refer to the Carbon 
Trust website, or contact Ivan Savitsky (ivan.savitsky@carbontrust.com) and Žilvinas Valantiejus 
(zilvinas.valantiejus@carbontrust.com). 
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The Offshore Wind Evidence and Change programme 
This project forms part of the Offshore Wind Evidence and Change programme, led by The Crown 
Estate in partnership with the Department for Energy Security and Net Zero and Department for 
Environment, Food & Rural Affairs. The Offshore Wind Evidence and Change programme is an 
ambitious strategic research and data- led programme.  Its aim is to facilitate the sustainable and 
coordinated expansion of offshore wind to help meet the UK’s commitments to low carbon energy 
transition whilst supporting clean, healthy, productive and biologically diverse seas. 

Who we are 
Our mission is to accelerate the move to a decarbonised future.  We have been climate pioneers for 
more than 20 years, partnering with leading businesses, governments and financial institutions 
globally. From strategic planning and target setting to activation and communication - we are your 
expert guide to turn your climate ambition into impact.  We are one global network of 400 experts with 
offices in the UK, the Netherlands, Germany, South Africa, Singapore and Mexico. To date, we have 
helped set 200+ science- based targets and guided 3,000+ organisations in 70 countries on their route 
to Net Zero. 
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Executive summary 
This project has developed an individual- based model (IBM) of seabirds for the non- breeding season 
which allows time- energy budgets, and consequent impact on body mass and survival, to be simulated 
under baseline (current) and future (with offshore wind, OW) scenarios.  

The development of a non- breeding season model of displacement is crucial in allowing the 
quantification of displacement impacts within the assessment process to be as transparent as 
possible, and to be based on the best available scientific evidence, and thereby plays an important role 
in filling a key evidence gap in relation to the assessment process.  

The development of a mechanistic model- based approach to quantifying displacement impacts, and 
the uncertainty associated with this, will also be of direct use in reducing consent risk by providing an 
improved understanding of the mechanisms underpinning displacement risk  and the ability to 
incrementally incorporate new evidence into assessments as it becomes available.  

The IBM has been applied (within WP2) to two case studies of UK seabird populations -  common 
guillemot on the Isle of May, and red- throated diver in the Outer Thames Estuary SPA – using a 
hypothetical but plausible scenario of North Sea OW development. 

This work package has focused on the quantification of uncertainty and variability using the IBM, and 
begins by outlining the approach taken to treatment of uncertainty within the model . 

Uncertainty and sensitivity analyses (UA and SA) are then used to identify key sources of uncertainty 
within the model, which underpin recommendations around future research and data collection. 

Since the model is, as with other IBMs, relatively computationally intensive, a high- performance 
computing cluster is used to undertake the model runs that underpin these analyses 

The uncertainty analysis (UA) focuses on evaluating overall levels of variation in mass at the end of 
the non- breeding season between agents and between parameter combinations 

The sensitivity analysis (SA) focuses on sensitivity of model outputs to variation in several key model 
inputs, specifically 7 key population- level parameters that relate to initial mass, energy costs of 
activities, proportion of individuals susceptible to OW displacement effects, and the body mass 
threshold for adult mortality. 

These analyses focus on three key model output metrics of direct relevance to offshore wind 
assessments: difference in population- level average (mean or median) mass at the end of season 
between impacted and baseline scenarios, which provides a proxy for OW impacts on productivity , and 
difference in population- level adult survival between impacted and baseline scenarios. 

Results of SA show the mean or median OW impact on mass at the end of the non- breeding season 
are most sensitive to three input parameters: the energy cost of “active” behaviour, followed by the 
energy costs of “inactive” and “dive” behaviours. 

SA also showed that OW impact on adult survival is most sensitive to two input parameters: mean 
initial body mass and the mortality threshold. 

Investigations of the relationships between outputs (R- squared values for SA models, bootstrap 
standard errors on key output metrics) and the number of agents per combination suggest that a large 
number of agents (potentially much larger than 8000) may be needed to obtain stable summary 
statistics of OW impacts, because of high levels of inter- individual variability (e.g., in initial mass and 
energy costs of activities) relative to levels of variability resulting from changes in parameter values.  

However, the qualitative results of the SA were the same regardless of the SA method used (random 
forest or regression tree) and regardless of whether 8000 or 4000 agents were considered, suggesting 
that key qualitative results of the analyses may be robust to the number of agents used. 
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SA results showed relatively low sensitivity to the proportion of individuals from the colony of interest 
that are susceptible to displacement, but this is likely to be because the effects of competition on the 
population of interest are dominated by displacement effects on individuals from other colonies, and 
the fundamental rebalancing of time spent feeding within the IBM in response to energy intake . 

Uncertainty would be reduced through an improved understanding of the energetic costs incurred by 
non- breeding seabirds, which might be obtained through deployment of appropriate biologging 
devices and/or biophysical modelling. 

Future work would be valuable to (a) better understand and incorporate uncertainty in the population-
level values of parameters (e.g., via expert elicitation) and (b) evaluate sensitivity to bird distribution 
maps and sea- surface temperature maps. 



7 

1. Introduction
The development of offshore renewable energy can make a significant contribution to the UK 
Government’s target to have decarbonised the energy system almost completely by 2050. However, the 
UK Government has a duty to ensure that offshore renewable developments (ORDs) are delivered in a 
sustainable manner, in accordance with the requirements of the Marine Strategy Framework Directive 
(EC/2008/56), the Habitats Directive (EC/92/43), the Birds Directive (EC/79/409), the Energy Act (2023) 
and derived legislation. ORDs have the potential to affect protected seabirds year- round, notably from 
collisions with turbine blades and through displacement from important habitat (Drewitt & Langston 
2006; Masden et al. 2010; Scottish Government 2011). Estimating demographic consequences of 
displacement and barrier impacts to seabirds outside of the breeding season is one of the least 
developed components of the UK impact assessment process, responsible for generating considerable 
uncertainty in year- round impacts to protected populations (Searle et al. 2023). This is largely due to a 
relative lack of understanding of (a) behaviour and ecology of seabirds outside of the breeding season, 
(b) links between seabird non- breeding ecology and demographic parameters such as survival or
subsequent breeding season performance and (c) possible impacts of displacement on seabird
behaviour and ecology.

This project has exploited the increasing availability of non- breeding season data on seabird 
distribution, displacement rates, activity and energetics, specifically of breeding individuals of known 
provenance, in order to develop an individual- based model (IBM) for the non- breeding season. The IBM 
allows time- energy budgets, and consequent impact on seabird body mass and survival to be simulated 
and compared under baseline (current) and future (with offshore wind farm [OWF]) scenarios. The 
development of a non- breeding season model of displacement is crucial in allowing the quantification 
of displacement impacts within the assessment process to be as transparent as possible, and to be 
based on the best available scientific evidence, and thereby plays an important role in filling a key 
evidence gap in relation to the assessment process. The development of a mechanistic model- based 
approach to quantifying displacement and the consequences of displacement, and the uncertainty 
associated with this, will also be of direct use in reducing consent risk by providing an improved 
understanding of the mechanisms underpinning displacement impacts, thereby reducing the chance of 
major future changes in assumed levels of risk and providing a mechanism to incrementally incorporate 
new evidence into assessments as it becomes available. 

Work Package 1 (WP1) focused on identifying the requirements for the tool, through engagement with 
relevant experts and stakeholders via a workshop. Work Package 2 (WP2) developed the underlying 
code for the model. applied the model to two UK seabird population demonstration examples, both of 
substantial relevance to conservation and the effects of offshore wind: (a) common guillemot on the 
Isle of May (Forth Islands SPA) and (b) red- throated diver in the southern North Sea (Outer Thames 
Estuary SPA). The case studies represent not only two species with differing biology, but also two 
species for which differing types and amounts of empirical data, particularly in relation to baseline 
spatial distributions, are available. The windfarm scenario that is considered within both of these case 
studies is based on synthetic (hypothetical) windfarm footprints that have been derived by randomly 
perturbing the shape, location and size of each individual footprint within the 2030 scenario of North 
Sea windfarm developments in Critchley et al. (2024) – see WP2 documentation for further detail of 
these perturbations. This work package, Work Package 3 (WP3), focuses on applying uncertainty 
analysis (UA) and sensitivity analysis (SA) to the model to allow prioritisation of future data collection, 
technology development and other research that can further reduce levels of uncertainty  (leading, in 
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turn, to reductions in consent risk). The detailed plan of work for this work package was developed 
following the discussions and workshop within WP1, to ensure that decisions taken regarding the 
quantification of uncertainty are consistent with current biological knowledge and with the workshop 
outcomes, and was developed in close conjunction with the model developers in WP2. We focus here, 
in WP3, upon the guillemot case study – as the model is relatively computationally intensive to run, and 
the sensitivity and uncertainty analyses require relatively large numbers of model runs, it was only 
feasible to apply these approaches to a single case study. The focus is on quantifying uncertainty and 
sensitivity within the context of a specific population, in relation to the underlying parameters of the 
model, but we anticipate that the qualitative results will have broader relevance.   

Within this report we summarize the way that uncertainty is quantified and communicated within the 
IBM and the caveats associated with this (Section 2), the methods and results of the uncertainty and 
sensitivity analyses (Section 3), conclusions on the extent to which parameters and model inputs 
contribute uncertainty and sensitivity to the model outputs (Section 4), and recommendations regarding 
prioritisation of future research and data collection that arise from this (Section 5). 

2. Treatment of uncertainty within the IBM
We begin by outlining the way in which uncertainty and variability are handled within the IBM, focusing 
on uncertainty and variability in inputs (Section 2.1) and the way that uncertainty in IBM outputs is 
handled (Section 2.2).  

2.1. Uncertainty and variability in inputs 
The IBM contains a range of input parameters and other inputs (see WP1 report and WP2 
documentation) and there is substantial variability and uncertainty associated with many of these 
inputs. Available information around estimates, and associated uncertainty , varies between species 
and, in some cases, between populations of the species. The two case studies considered in WP2 focus 
on a relatively data rich example (guillemot at the Isle of May) and a relatively data poor example (red 
throated diver in the Outer Thames Estuary). We focus here, within WP3, upon the former case study. 

The model contains 20 parameter values (Table 1). These 20 values represent 11 biological 
parameters, each with an estimate (initial time activity budgets for each of four activities, activity costs 
for each of four activities, initial mass, mortality threshold, proportion of individuals susceptible to 
windfarm effects). For nine of the 11 biological parameters – initial time activity budgets and costs per 
activity and initial mass -  a second parameter value (SD) was used to capture the variability between 
individuals and (for activity costs) over time. Parameter values, are taken from the published literature 
wherever possible, but there is an absence of existing evidence around mortality threshold, whilst 
existing evidence around the final biological parameter (proportion of individuals susceptible to 
windfarm effects during the non- breeding season) is limited – see the WP2 report documentation for 
further details. 

. 
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Table 1. Parameter values used for guillemot at the Isle of May . † these parameters are part of 
energetics equations which can be functionally related to sea surface temperature and dive duration – 
refer WP2 documentation for details. 

Parameter 
Calculation 
units 

Estimate/paramete
r 

SD 

Initial time activity 
budget per activity 

Flight h/day 0.056 

Dive h/day 3.11 
Active h/day 10.5 
Inactive h/day 10.3 

Energy cost per 
activity† 

Flight kJ/hour 507.6 237.6 
Dive kJ/hour 3.71 1.3 
Active kJ/hour 113 22 
Inactive kJ/hour 72.2 22 

Initial body mass G 929 56 
Mortality threshold G 800 
Proportion susceptible to displacement Proportion 0.67 

No published information on population- level uncertainty,  rather than input variability, was either 
available or used in the simulations. 

Aside from these input parameter values, the model also depends on four other input variables (“forcing 
variables”): (1) a bird distribution map (which, for guillemot, is monthly and colony- specific); (2) a 
competition map (also monthly and population- specific for guillemot), (3) a sea- surface temperature 
map (monthly)  and (4) polygons (shapefiles) of offshore windfarm footprints.   

The sources of information and functional forms for each of these inputs for the guillemot case study 
are detailed in the WP2 documentation. For the guillemot case study the bird distribution maps and 
competition maps are both derived from colony- specific monthly utilisation distributions estimated 
from tracking data (Buckingham et al., 2022). For the SA here we do not consider uncertainty in any of 
these four sources of information, for logistical reasons (we are already considering a relatively large 
number of parameters for the SA, given that there are computational constraints around how many 
model runs we can do), but these could be considered in future work (Section 5.2).   

Overall quantification of uncertainty in model outputs (UA), accounting for variability (e.g. across time 
and between agents) in parameters and inputs for which quantification is possible, is obtained via 
repeated simulation from the IBM. Stochasticity in model inputs, and stochastic elements within the 
model itself that are designed to capture variability, both translate into stochasticity in the key model 
outputs (which are population- level summaries, such as estimated impacts of windfarms on overall 
survival rates), allowing quantification of uncertainty in these outputs.  

2.2. Uncertainty in outputs 
The key output for each individual within the IBM is the mass at the end of the non- breeding season, 
which is assumed to provide a direct link to annual demography. For example, relationships between 
adult mass at the end of the non- breeding season and productivity in the breeding season that follows 
this can be used to translate mass into productivity in situations where relevant empirical evidence 
exists (there is current work underway on this within other projects) but this translation is not directly 
considered within the model. Adult mortality is not directly simulated within the model but is assumed 
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to occur if mass at the end of the season falls below a mortality threshold (with the value of this 
threshold being a model parameter). The model is primarily designed to estimate OWF effects so 
differences in final adult mass and survival values between paired impacted and baseline (unimpacted) 
runs form the key outputs from the model (described in detail in Section 3.1.1). 

The basic operation of the IBM involves running a single individual (agent) across the entire non-
breeding season, with and without windfarm effects, and comparing the values obtained from the 
impacted and baseline (unimpacted) runs. The model produces outputs for each agent, so uncertainty 
and variability in these key outputs are quantified by summarizing across individuals.  A key 
characteristic of the DisNBS IBM is that it is designed so that the stochastic elements of simulations 
can be generated independently for each agent – this is a key practical distinction from SeabORD 
breeding season model of seabird displacement impacts (Searle et al., 2014, 2018), for example, and 
means that, unlike in SeabORD, the calculation of uncertainty and variability in outputs takes place 
outside the model itself. 

Variability between individuals can be estimated from the outputs by running the model with 𝑛 
individuals, and then quantifying the variability between the outputs generated for each individual – 
e.g., by calculating the standard deviation across individuals of OWF effect on final adult mass.

In practice, however, primary practical interest will typically lie in the mean response to OWFs at a 
population (e.g., SPA or regional) level, and in the uncertainty associated with this population- level 
effect. This can be captured by (1) running the model with 𝑛 individuals each of 𝑚 times, (2) calculating 
the mean across individuals for each of the 𝑚 replicates, and (3) using the variation in the resulting 
replicate- level estimate to capture uncertainty in population- level effects. Note that this uncertainty 
will arise from two sources: (a) inherent stochastic variation between populations as a result of inter -
individual variability and (b) uncertainty in population- level parameter values. The former will be 
strongly linked to population size: with a sufficiently large population size 𝑛 we would expect this 
uncertainty to become effectively zero. The latter depends on the level of uncertainty that we assume 
in the population- level input parameters and variables: it will be zero unless we allow the values of 
some of these parameters, or variables, to vary between replicates.  

3. Uncertainty and sensitivity analysis
UA and SA can be used to determine the sensitivity of model outputs to input parameters and other 
model inputs. UA can quantify the level of uncertainty in model outputs that is a result of both epistemic 
and aleatory uncertainty (Mullins, et al, 2016; Beven & Lamb, 2017) in model inputs -  epistemic 
uncertainty in model inputs includes uncertainty about parameters that are assumed fixed but unknown, 
while aleatory uncertainty in inputs includes temporally or environmentally stochastic input data. SA 
assesses the extent to which key model outputs are sensitive to variations in model inputs and 
parameters. We will use a suite of simulations from the model to perform both UA and SA. We consider 
sensitivity and uncertainty not only in relation to each parameter individually but also in relation to 
combinations of multiple parameters, since focusing only on uncertainty or sensitivity to each 
parameter in isolation may fail, due to dependencies between parameters, to capture important 
characteristics of the model.  
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Given that there is published information on variability (e.g., between individuals and over time) for 
many of the parameters, but little or no information around uncertainty in the population- level 
estimates of these parameters, we focus here upon:  

1. Within UA generating simulations for multiple agents, for the fixed set of population- level
parameters (including, where relevant, mean and SD values) given in Table 1 – this will
automatically account for variation in activity budgets, initial time budgets, initial mass, and
these characteristics are assumed within the model to vary between individuals (and for
activity budgets over time) based on the mean and SD population- level values of the
parameters. We then evaluate the overall levels of variability – between agents, and between
parameter combinations. Note that this differs from the standard approach to UA by only
considering aleatory, and not epistemic, uncertainty. This is necessary given the lack of
available information on epistemic uncertainty in this context, but means that the UA can only,
in this case, have a limited interpretation (e.g. because the ranges assumed for the parameters
within the simulations that underpin the UA are somewhat arbitrary, and so do not necessarily
represent the real- world uncertainty within these parameters).

2. Within SA using a sufficiently large number of agents, n,  that the model outputs are stable
(based on the UA), so that the model can effectively be regarded as (at least approximately)
deterministic, and then looking at the sensitivity of these outputs to varying a subset of the
model’s 20 parameter values (Table 1): mean and SD of initial mass, activity costs per activity,
initial time budgets per activity, mortality threshold, and proportion of individuals susceptible
to windfarm effects.

3. Finally, we look at how the outputs from the UA and SA change as the number of agents per
parameter combination (n) is increased, and, in particular, look to identify the number of agents
beyond which the summary statistics of key outputs (e.g. offshore wind impacts on mass at
the end of the non- breeding season) and the results of the SA are stable, in order to evaluate
how robust our results are in relation to the number of agents used within the simulations.

3.1. Methods 

3.1.1 Model outputs 

The key model outputs that we will consider within the uncertainty and sensitivity analyses relate to the 
impact of windfarms on adult mass at the end of the non- breeding season. We focus, for each individual, 
on their mass at the end of the non- breeding season (simulation day 270), because (a) this is used in 
this context to calculate survival (e.g. each agent is assumed to die if final mass is below the mortality 
threshold, and to survive otherwise) and (b) this is assumed to provide a proxy  for productivity within 
the subsequent breeding season. When aggregating across individuals (agents) for each model run we 
focus upon three key output metrics, relating to OW impacts: 

M1: mean OWF impact on mass at the end of the non- breeding season = mean across agents of [mass 
of agent at the end of non- breeding season under impacted scenario – mass of agent at the end of the 
non- breeding season under baseline scenario];  

M2: median OWF impact on mass at the end of the non- breeding season = median across agents of 
[mass of agent at the end of non- breeding season under impacted scenario – mass of agent at the end 
of the non- breeding season under baseline scenario].  We consider this as a potential alternative to the 
mean, as the mean may be sensitive to outlying and extreme values;  
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M3: OWF impact on adult survival = [proportion of agents whose impacted mass at the end of the season 
is above a mortality threshold, 𝑀 -  proportion of agents whose baseline mass at the end of the season 
is above a mortality threshold, 𝑀] 

3.1.2 Population-level parameters 

The model contains 20 user- specified population- level parameters (outlined in Table 1) that are 
relevant to non- breeding seabirds: 

- Mean and SD of initial time activity budgets for each of four activities (total of 8 parameters);
- Mean and SD of energy costs for each of four activities (total of 8 parameters);
- Mean and SD of initial adult mass (total of 2 parameters);
- Proportion of individuals susceptible to displacement (1 parameter);
- Mortality threshold (1 parameter: note: only relevant for the calculation of metric M3)

This represents a large number of parameters to consider within an SA, particularly for a model that is 
relatively computationally intensive to run. The structure of the model suggests that the key output 
metrics may be relatively insensitive to initial time activity budgets, so we take an iterative approach to 
the SA (e.g. Frey et al., 2022) and begin by undertaking some test runs to verify if this is indeed the 
case, by checking whether varying the initial time budgets substantially impacts the mass values at the 
end of the season. Provisional results suggested little impact on the mean (although some impact on 
the SD and range). Since these test runs involved imposing relatively large variations in time budgets 
the results provided a basis to exclude these parameters from the main SA. Further test runs suggested 
that OWF impacts on final mass were generally less sensitive to parameters associated with standard 
deviations than those associated with means, so these parameters were also excluded from the SA. 
The main UA and SA analyses therefore focused on varying the values of 7 parameters:  

- Mean energy cost for each of four activities;
- Mean initial adult mass;
- Proportion of individuals susceptible to displacement;
- Mortality threshold

3.1.3. Parameter combinations 

We generated combinations of these seven parameters for use in the UA and SA by using Latin 
hypercube sampling (implemented using the maximinLHSfunction from the “ lhs” package in R -  Carnell,  
2024). In all cases, the ranges of parameter values used in generating the parameter combinations were 
assumed, in the absence of other information (e.g. the absence of information around uncertainty in 
the mean) to span from - 20% to +20% of the current parameter values, for all parameters except the 
proportion of birds susceptible to displacement effects (for which the range will be 0 to 1, the range 
within which this proportion must logically lie). The parameter ranges used for each parameter are 
shown in Table 2. 

Table 2. Parameter ranges used in the UA and SA for guillemot. Ranges are taken to be - 20% to 20% of 
the default parameter value, for all parameters except “proportion susceptible to displacement”.  

Parameter Lower Upper 
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Mean energy cost per 
activity (providing 
kJ/hour within 
simulation) 

Flight 406.08 609.12 
Dive 2.968 4.452 
Active 90.4 135.6 
Inactive 57.76 86.64 

Mean initial body mass (g) 743.2 1114.8 
Mortality threshold (g) 640 960 
Proportion susceptible to displacement 0 1 

3.1.4. Model runs 

Two key choices are the number of parameter combinations (m) and the number of agents per 
parameter combination (𝑛). We would ideally take the values of both 𝑚 and 𝑛 to be as large as possible, 
to order to produce stable UA and SA results, but the computational burden of running the model will 
also depend upon the values of both 𝑚 and 𝑛,  with the total number of simulated agents being 𝑚 ∗ 𝑛. 
We therefore aim to balance these two considerations by selecting values of 𝑚 and 𝑛 that produce 
relatively stable results, but also allow the model to be run within a realistic period of time.  In practice, 
we generated model runs sequentially: this involved generating an initial batches of runs using 
relatively small values of 𝑛 and 𝑚,  checking if this is sufficient to produce stable UA and SA outputs, 
and continuing to increase the number of runs until stability is obtained. Our final set of model runs 
involved m=150 parameter combinations and n=8000 agents per parameter combination (requiring 
simulation of 150 * 8000 = 1.2 million agents).  

Final simulations for each parameter combination involving 𝑚=8000 agents required around 2.5 hours 
to complete, so the total computer time to complete all 𝑛 =150 parameter combinations was therefore 
approximately 375 hours. In order to generate the number of model runs necessary to perform an SA 
we therefore implemented the model with a high performance cluster (HPC), allowing us to simulate 
multiple model runs in parallel.  The simulations were carried out using the computing resources 
provided by the UK crop diversity HPC (High performance computing) cluster which is utilised by seven 
UK institutions including BioSS and supports a variety of research fields (Percival - Alwyn et al., 2024). 
It has the capacity of multiple CPU cores (>5000+), large multi- nodal parallel storage capacity (~8PB) 
and high memory (~41 TB), making it efficient for operations requiring high computing power. 
Technical details of the implementation of the simulations on the HPC cluster are given in Appendix A. 

An alternative to the use of a HPC to improve computational efficiency would have been to build an 
emulator of the model (a fast, statistical approximation to the model), and then to use the emulator to 
generate large numbers of model runs. However, emulation provides approximate, rather than exact, 
model outputs, so the use of a HPC, where feasible, provides a more direct solution to the computational 
challenges. The methodology for emulating stochastic models is also less well developed than emulator 
of deterministic models, creating methodological challenges in applying this approach to IBMs.  

3.1.5. Uncertainty analysis 

The distinction between uncertainty analysis (UA) and sensitivity analysis (SA) is that uncertainty 
analysis would usually involve simulating the values of input parameters using information on the 
uncertainty within estimates of those parameters. In the absence of such information, we base the UA 
and SA on the same set of model runs, which have been generated (Sections 3.1.3 and 3.1.4) using the 
same ranges for the input parameters and assuming that each input parameter is uniformly distributed 
within this range. Within this context, the distinction between UA and SA lies only in the way in which 
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we analyse and interpret the outputs of these model runs: for the UA we focus upon summarizing OWF 
impacts on adult mass, associated uncertainties,  across full set of model runs associated with the full 
range of 150 parameter combinations, whereas in the SA we investigate the extent to which model 
outputs to sensitive to the variations in specific parameters.  

For the UA we: 

a) calculate the windfarm impact on final adult mass for each of the entire set of 1.2 million agents,
and calculate basic summary statistics of these values (including the standard deviation across
agents);

b) derive the values of mean OWF impact (M1) and median OWF impact (M2) for each of the 150
parameter combinations, and calculate basic summary statistics of these values (including the
standard deviation across parameter combinations).

In addition we use a linear model (applied to the entire set of values of OWF impact on final adult mass 
for all 1.2 million agents, and using “parameter combination” as a categorical explanatory variable)  to 
investigate the extent to which variations in agent- level OWF impacts can be explained by differences 
between parameter combinations: we report the percentage of variation explained (the R - squared 
value) and report whether there are significant differences between parameter combinations via the p-
value associated with a one- way ANOVA. 

3.1.6. Sensitivity analysis 

We investigate sensitivity of the three output metrics of interest (M1, M2, M3) in relation to the seven 
population- level parameters that were varied between the model runs. Note that the final parameter 
(mortality threshold) only actually appears in the calculation of metric M3, but is included for 
consistency in all analyses. 

A range of fundamentally different sensitivity analysis methods exist, with four categories being 
derivative- based (e.g., Morris elementary effects), distribution-  or variance- based (e.g., Sobol’ 
sensitivity indices), variogram- based, and regression- based (Pianosi et al., 2016, Razavi et al 2021). 
We restrict attention here only to SA methods for which model runs can be generated iteratively (i.e. an 
initial set of model runs can be generated, but this set can be expanded to include additional model runs 
if needed), and chose in particular two methods that fall within the regression- based categorization: 
regression trees and random forests, which we explain below. These two methods allow implementation 
of this sequential approach, which was logistically necessary given the computational intensity of our 
model and the timelines of this project. This excluded consideration of some SA approaches that are 
not appropriate to use when model runs are being generated sequentially as the procedures for 
generating the parameter combinations, the space- filling algorithms, require a priori specification of 
the number of parameter combinations, n. 

Statistical regression methods explain variability in a response variable in relation to multiple 
explanatory variables and are commonly used in the analysis of empirical data. However, they can also 
be used for sensitivity analysis of a process- based model, such as an IBM, by applying these methods 
to a set of outputs from, and associated inputs to, that model. In this context the output of interest from 
the process- based model is treated as the "response variable", and the model inputs (e.g. parameters) 
are treated as "explanatory variables". A wide range of statistical methods of this form exist, and 
therefore have potential to be used for SA. Multiple regression is perhaps the simplest such method, 
but requires strong assumptions around the nature of the effects of the explanatory variables, by 
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assuming either linearity or simple extensions of linearity. Regression trees (Breiman et al., 1983; 
James et al., 2021) are a flexible, typically nonlinear, alternative, that attempt to explain variation in the 
response variable in relation to a hierarchical partitioning of values of the explanatory variables into 
groups based on thresholds. The approach is termed “regression trees” because the outputs of the 
approach can be displayed visually as a “tree”. Random forests are an extension of regression trees 
(Breiman, 2001; James et al., 2021) in which multiple regression trees, rather than a single tree, are 
produced, based on bootstrapping (resampling) the model runs and fitting a regression tree to each 
bootstrap sample. Predicted outputs are then averaged across trees, with the rationale for using 
random forests being that the accuracy of these averaged predictions is often higher than that of 
predictions from a single regression tree. The relative importance of individual input parameters can 
be evaluated, using outputs from their regression trees or random forests, by calculating the reduction 
in mean squared error that results from including the input parameter in the tree(s), and this provides 
the basis for using both methods for sensitivity analysis. 

These methods are implemented using the R packages “rpart”  and “randomForest” and both methods 
are applied to the same set of runs from the DisNBS model.  

3.1.7. Robustness of results to number of agents 

Finally, we evaluate the extent the results of the UA and SA are robust in relation to the number of 
agents (in order to validate the use of 8000 agents per parameter combination), by: 

a) using nonparametric bootstrap to calculate the standard error associated with estimating mean
OWF impact (M1) and median OWF impact (M2) for numbers of agents per parameter
combination 𝑛 ranging from 500 to 8000 (in steps of 500), in order to see how the standard
errors on M1 and M2 vary as the number of agents per parameter combination 𝑛 is increased.
For each value of 𝑛 a bootstrap standard error is calculated separately for each parameter
combination, and the mean of these standard errors across parameter combinations is then
calculated.

b) repeating the SA for 4000 rather than 8000 agents,  in order to check that the main qualitative
SA results obtained using 4000 and 8000 agents are identical.

3.2. Results 

3.2.1. Uncertainty analysis 

Table 3 and Figure 1 summarize the simulated differences in final (day 270) mass between impacted 
and baseline scenarios across the full set of 1.2 million simulated agents (from 150 different parameter 
combinations, with 8000 agents per combination). 

It can be seen that there is a very high level of variation between individual agents, and that both positive 
and negative effects can occur at the individual level, with the difference in mass ranging from - 149.47g 
to 142.54g. The average difference is negative (mean - 2.51g, median - 2.21g), indicating that mass is, 
on average, lower in impacted than baseline scenarios, but the magnitude of variation between agents 
is substantially higher than the magnitude of the mean (SD = 12.56g). Mass values are approxi mately 
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symmetrically distributed around the mean, but the distribution has heavier tails than a normal 
distribution (e.g. includes more extreme values than would be expected based on normality).  

Variation between parameter combinations in mean and median differences (M1 and M2) is much lower 
than the variation between individual agents: the SD across parameter combinations is 0.21g for M1 
and 0.12g for M2. Values of M1 are consistently negative, ranging from - 2.99g to - 1.93g, and values 
of M2 have an even narrower range (- 2.48g to - 1.91g). Values of M1 and M2 are fairly highly correlated 
with each other (correlation = 0.79), but at this level of correlation the relative ranking of different 
parameter combinations is not always consistent between M1 and M2 – the differences between M1 
and M2 (mean and median values across agents) presumably arise because there are a reasonable 
number of individual agents with extreme differences between impacted and baseline (which are 
included in the calculation of M1 but not M2). 

A linear model of agent- level difference in mass (impacted- baseline), in which “parameter 
combination” is a categorical variable, showed that (a) there are very highly statistically significant 
differences between parameter combinations (p < 10 - 15) but (b) “parameter combination” only explains 
a very small percentage of variation in agent- level differences in mass (R- squared value of 0.03% -  i.e. 
well below 1%). The fact that we can detect significant differences between parameter combinations 
when they explain such a small percentage of variation explained is because the very large number of 
agents simulated (1.2 million) allow us to detect subtle differences in mean values between different 
parameter combinations.

Type Min Mean Median Max SD 

Agent -149.47 -2.51 -2.21 142.54 12.56 

M1 -2.99 -2.51 -2.51 -1.93 0.21 

M2 -2.48 -2.22 -2.22 -1.91 0.12 

Table 3. Summary statistics of simulated differences in final (day 270) mass between impacted and 
baseline. The first row shows summaries across the 1.2 million individual agents (within the 150 
parameter combinations and 8000 agents per parameter combination). The second and third rows are 
based on calculating mean and median values per parameter combination (M1 and M2) and then 
summarising those values across parameter combinations. 
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Figure 1. Histograms of differences between impacted and baseline final mass (Day 270) for each of 
the 1.2 million simulated agents (top left), after aggregating up to the mean value for each of the 150 
parameter combinations, M1 (top right) and after aggregating up to median value per parameter 
combination, M2 (bottom left). A scatterplot of M1 against M2 is also shown (bottom right). 

3.2.2. Sensitivity analysis 

Mean of windfarm minus baseline body mass difference, M1 

Figure 2 summarises the parameters that determine the outcome of the regression tree analysis for the 
mean of body mass difference (M1 windfarm minus baseline) on day 270. The regression tree on the 
left of the figure is a depiction of the branching based on increasing importance of the selected 
variables, whilst the right- hand part of the figure summarises the relative importance of parameters. 
The final nodes (leaves) in the regression tree (left- hand plot) include the assigned values (M1) for 
parameter combinations that fall into each node as well as the percentage of parameter combinations 
in that node. The most important input distribution parameters, as shown in the bar plot on the right of 
figure were, in order of importance, mean energy costs of Active (3.18), Inactive (1.06), Dive (0.76) and 
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Flight (0.46) behaviours, OWF Impact (i.e. probability of binomial distribution) (0.29), Mortality (0.27) 
and Body Mass (0.24). Both the regression tree and the random forest indicate that the four activity 
means, as a group, have more influence on y1 than the other three input parameters. As the assigned 
values in the regression tree indicate, the greater the active mean value the more negative the value of 
M1 (more body mass loss due to ORDs).  

Figure 3 summarises the outcome of the random forest analysis for M1. The two figures both interpret 
the importance of the variable but by using different methods -   The order of the variables as per their 
significance is median of Active (IncNodePurity = 2.44), Inactive (1.01), Dive (0.80), Flight (0.65), OWF 
impact (Binary Distribution probability) (0.57), Mortality (0.50) and Body Mass (0.47) as shown by the 
plot on the right. Results for the top four parameters are the same where %IncMSE or IncNodePurity is 
used, but the order of the 5th and 6th most important parameters differs between the two methods. The 
variance explained by the model is 47.4%.  

Median of windfarm minus baseline body mass difference, M2 

Figure 4 summarises the parameters that determine the outcome of the regression tree analysis for 
median of the body mass difference on day 270 (M2). The order of the branching shown in the 
regression tree on the left corresponds to the importance of the input parameters. The most important 
input (mean) distribution parameters in the order of importance were median of Active (0.98), Dive 
(0.59), Inactive (0.49), Mortality (0.12), Flight (0.11), Body Mass (0.12) and OWF Impact (0.1) as 
depicted in the bar plot on the right. 

Similarly, Figure 5 summarises the outcome of the random forests analysis for the median of the 
difference in body mass on day 270 (M2). The order of the variables as per their significance is median 
of Active (0.69), Dive (0.43), Inactive (0.33), Flight (0.13), Body Mass (0.12), OWF impact (Binary 
Distribution probability) (0.12) and Mortality (0.11) and as shown by the plot on the right . The variance 
explained by the random forest model is 71.11%. Note that within the random forest analyses more of 
the variance in the median than the mean is explained – this may reflect the influence of outlying or 
extreme values that add noise into the values of the mean but not the median.  

Windfarm minus baseline difference in survival, M3 

Figure 6 summarises the parameters that determine the outcome of the random forest analysis for the 
difference in the proportion of agents out of the 8000 that are equal or greater than the mortality 
threshold on day 270 (M3) for every 150 combination values. The regression tree on the left serially 
represents the importance of the seven parameters. The most important input distribution parameters 
in the order of importance were mean of Body Mass (2.71e- 03), Mortality (1.25e- 03), OWF Impact (i.e. 
probability of binomial distribution) (4.00e- 04), Flight (3.35e- 04), Active (3.05e- 04), Inactive (2.22e-
04) and Dive (4.30e- 05) as depicted in the bar plot on the right. The order of these is almost reversed
as compared to the regression trees for Mean Mass (Figure 2) and Median Body Mass (Figure 4). In
particular the 4 parameters related to activity types dominate change in body mass but have much less
effect on change in survival, when compared to the body mass and mortality parameters.

Similarly, Figure 7 summarises the outcome of the random forests analysis for the difference in the 
proportion of agents out of the 8000 that are equal or greater than the mortality threshold on day 270 
for every parameter combination. The order of the variables as per their  significance is median of Body 
Mass (1.56e- 03), Mortality (9.51e- 04), OWF Impact (i.e. probability of binomial distribution) (5.55e-
04), Flight (5.44e- 04), Dive (4.85e- 04), Active (4.68e- 04) and Inactive (4.42e- 04) as shown by the plot 
on the right. The variance explained by this random forest model is 34%. 
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Figure 2. Variable importance within the DisNBS model based on applying regression trees to OW impact on mean mass at the end of the non- breeding 
season (M1). The regression tree is shown on the left- hand side and relative variable importance on the right- hand side. 
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Figure 3. Variable importance within the DisNBS model based on applying random forests to OW impact on mean mass at the end of the non- breeding 
season (M1), as summarized using two different methods: %IncMSE (Percentage Increase in Mean Squared Error) and IncNodePurity (Increase in Node 
Purity). 
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Figure 4. Variable importance within the DisNBS model based on applying regression trees to OW impact on median mass difference at the end of the non-
breeding season (M2). The regression tree is shown on the left hand side and relative variable importance on the right hand side.  
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Figure 5. Variable importance within the DisNBS model based on applying random forests to OW impact on median body mass difference at the end of the 
non- breeding season (M2), as summarized using two different methods: %IncMSE (Percentage Increase in Mean Squared Error) and IncNodePurity 
(Increase in Node Purity 



23 

Figure 6. Variable importance within the DisNBS model based on applying regression trees to OW impact on difference in survival at the end of the non-
breeding season (M3). The regression tree is shown on the left hand side and relative variable importance on the right hand side.  
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Figure 7. Variable importance within the DisNBS model based on applying random forests to OW impact on difference in survival at the end of the non-
breeding season (M3), as summarized using two different methods: %IncMSE (Percentage Increase in Mean Squared Error) and IncNodePurity (Increase 
in Node Purity). 
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Table 4. Standardized variable importance scores of input parameters based on analysis of each of 
the three output metrics (M1, M2, M3) using two SA methods (regression trees and random forests). 
Scores are summarized to sum to one for each analysis. 

Importance scores, standardised to sum to one 

Parameters 

M1 (Mean) M2 (Median) M3 (Proportion Mortality) 

Regression 
Tree 

Random 
Forest 

Regression 
Tree 

Random 
Forest 

Regression 
Tree 

Random 
Forest 

Active 0.51 0.38 0.39 0.36 0.06 0.09 

Inactive 0.17 0.16 0.20 0.17 0.04 0.09 

Dive 0.12 0.12 0.24 0.22 0.01 0.10 

Flight 0.07 0.10 0.04 0.07 0.06 0.11 

OWF Impact 0.05 0.09 0.04 0.06 0.08 0.11 

Mortality 0.04 0.08 0.05 0.06 0.24 0.19 

Body Mass 0.04 0.07 0.05 0.06 0.51 0.31 

We summarize the overall rankings of parameters in Table 4. SA results consistently (whichever SA 
method was used) indicated highest sensitivity of the OW impact on mean adult mass at the end of 
the non- breeding season (M1) to the energy cost of “active” behaviour, followed by the energy cost 
of “inactive” behaviour and then the energy cost of “diving”, with sensitivities to the remaining four 
parameters (mean initial mass, proportion of individuals susceptible to OW effects, energy cost of 
flying, mortality threshold) being substantially lower and similar to each other. SA results consisting 
of OW impact on median mass at the end of the non- breeding season (M2) were broadly similar, 
except that sensitivity to the energy cost of “diving” was now higher than sensitivity to the energy 
cost of “inactive” behaviour. In contrast, OW impact on mortality/survival at the end of the non-
breeding season (M3) was, regardless of SA method, most sensitive to initial body mass, followed by 
the mortality threshold. 

3.2.3. Robustness of results to number of agents 

A key decision within our analysis was the number of agents per parameter combination, with the 
selected value (8000) chosen so as to balance precision in aggregate metrics (M1, M2, M3) against 
computational effort. In this section we investigate the evidence around the appropriateness of this 
value. 

Ranking of parameter importance: In Appendix B we show the SA results for 4000 rather than 8000 
agents, in order to evaluate whether the results are, by 8000 agents, relatively insensitive to the 
number of agents – the results indicate that the overall ranking of parameters is similar  (and, 
crucially, that the ranking is identical for the three parameters with highest sensitivity for impact on 
mean/median mass and identical for the two parameters with highest sensitivity for impact on 
survival), and the qualitative conclusions are therefore the same, whether 4000 or 8000 agents is 
used, giving reassurance that the results obtained with 8000 agents are likely to be stable (i.e. that 
we would have obtained similar results by using an even higher number of agents per parameter 
combination). 

R- squared values: R- squared values show the percentage of variance explained, which provides an
indication of the adequacy of models that underpin the sensitivity analysis. Within this context, lack
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of fit could either arise from (a) unexplained variation that arises as a result of stochasticity (e.g. 
because we are using a stochastic model with a finite number of agents, but treating the model 
outputs as though the model were deterministic) and (b) lack of flexibility in the SA methods to 
capture the impact of parameters on the output metrics. If lack of fit is arising primarily from (a) then 
the R- squared value should increase as the number of agents increases, but this is not necessarily 
the case for lack of fit arising from (b). In Table 4 we compare the R- squared values associated with 
random forests models for each of the three output metrics, using either 8000 agents or 4000 agents. 

The results with 8000 agents indicate that:  

- R- squared values for OW impacts on median mass remain substantially higher than those for
OW impacts on mean mass, presumably reflecting that the fact that median mass is less
influenced by outlying or extreme values than mean mass

- R- squared values for OW impacts on mean mass are, in turn, substantially higher than those
for OW impacts on survival. This may reflect the fact that the thresholding involved in
calculating survival (by classing each individual in a binary way based on mass: survived or
died) introduces additional stochasticity into the model outputs.

The R- squared values that arise when using 4000, rather than 8000, agents are slightly lower for OW 
impact on median mass and OW impact on survival, but much lower for OW impact on mean mass, 
suggesting that the results obtained when looking at OW impacts on mean mass with 4000 agents 
may be particularly sensitive to the effects of outlying or extreme values.  

Table 4. R- squared values for random forest models of each of the three output metrics, using either 
4000 or 8000 agents. 

R- squared values 8000 agents 4000 agents 

OW impact on mean mass 47.4% 28.7% 

OW impact on median mass 71.1% 68.0% 

OW impact on survival 34.0% 32.0% 

Bootstrap standard errors: In Figure 8, we show how the bootstrap standard errors around M1 and 
M2 changed as the number of agents per parameter combination changes. With 8000 agents the 
standard errors are X and X respectively. The standard errors for 8000 agents are of very small 
magnitude relative to the variation between individual agents, but remain moderately large relative 
to the variation in mean values of M1 and M2 between parameter combinations. 

However, it is clear from the figure that the reduction in standard error from adding additional agents 
is relatively slow by the time 8000 agents are being simulated, so a very large increase in the number 
of agents above this would be needed in order to yield substantially smaller standard errors. 

Conclusions: The bootstrap sample errors and R- squared values indicate that a very large number of 
agents (much larger than the maximum value of 8000 considered here) may be needed in order to 
yield stable estimates for differences between parameter combinations, because the inter- agent 
variability in outputs is much larger than the variability in mean outputs between parameter 
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combinations. However, the key qualitative results of the SA, in relation to the relative importance of 
different parameters, emerge strongly from the SA, and appear, based on the limited investigation 
that was feasible here, to be robust to the number of agents. 

FIGURE 8. Bootstrap standard errors (mean values, averaged across parameter combinations) of 
M1 (black) and M2 (grey), for differing numbers of agents per parameter combination from 500 to 
8000 in steps of 500. 
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4. Conclusions
Published evidence around uncertainty/variability in parameter values was in relation to inter -
individual variability, rather than population- level uncertainty, so the UA focused on summarizing 
(using the same model runs as the SA) overall levels of variation across agents and across parameter 
combinations. Differences in final (Day 270) mass between impacted and baseline scenarios showed 
substantial variation between agents. Aggregated outputs (mean and median differences in final 
mass averaged across agents, M1 and M2) showed much lower levels of variation between parameter 
combinations, even though parameter values were considered to lie within a relatively wide range ( -
20% to 20% of case study parameter values for all parameters except the proportion of birds 
susceptible to windfarm effects which was assumed to be anywhere between 0 and 1).  Differences 
(windfarm minus baseline) in final mass for individual agents ranged from below - 140g to above 
+140g. Mean differences (M1) were consistently negative and ranged, across the 150 parameter
combinations considered, from - 3g to - 1.9g, whilst median differences (M2) had an even narrower
range.

Exploratory sensitivity analysis runs, using smaller numbers of agents than those used for the final 
SA, suggested that outputs had relatively low levels of sensitivity to parameters relating to initial 
time budget, so these parameters were not considered in the final SA. This is also expected at a 
theoretical level given the IBM design – the agents are dynamic in their daily activity budgets based 
on energy requirements i.e. the activity budget can rapidly change based on need. For the final SA 
seven parameters were therefore considered (mean energy costs of four activities, proportion of 
individuals sensitive to OWF effects, mean initial mass, and mortality threshold). 150 parameter 
combinations with 8000 agents per combination (a total of 1.2 million simulated agents), were used 
within the SA, with the model runs implemented using a high- performance computing cluster. Two 
sensitivity analysis methods – random forests and regression trees – were considered, and the 
analyses were run using either 4000 or 8000 agents (to ensure that the results were not sensitive to 
the number of agents).SA results consistently (whichever SA method was used) indicated highest 
sensitivity of the OW impact on mean adult mass (M1) and median adult mass (M2) at the end of the 
non- breeding season to the energy cost of “active” behaviour, followed by the energy costs of 
“inactive” and “diving” behaviours (with higher sensitivity to “inactive” than “diving” for mean adult 
mass, and the opposite for median adult mass). Overall these findings are logical since for a model 
with a bioenergetic calculation at its heart, then increasing the energy requirements of the agents 
will necessarily lead to greater demand for food from the supporting environment. If this requirement 
cannot be met then mass loss ensues. While the cost of “active” behaviour is lower than that of 
“flight”, guillemots spend so little time in flight during the non - breeding season (Buckingham et al.,  
2023), that the activity using, and so requiring, the greatest energy input is “active” behaviour. This 
is followed by the other behaviours in broadly descending order of largest daily energy use and input. 

The sensitivity of the DisNBS model to activity energetic costs has implications for extension of the 
model to red- throated divers and/or other species that are less data rich. If the model is sensitive to 
understanding rates of energy expenditure, then this puts pressure on the accuracy of estimates of 
these rates. While laboratory estimates for these exist for guillemots (Croll & McLaren, 1993), there 
are no equivalent values for red- throated divers, with rates at present estimated from allometric 
equations (Dunn et al., 2023. While uncertainty in these estimates could be calculated, this does 
highlight the value of empirical data for input into DisNBS and similar models.  
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The finding that the OW impact on mean or median adult mass is not particularly sensitive to the 
proportion of individuals susceptible to OW effects may appear counter- intuitive but is explained by 
two IBM fundamentals. Firstly,  and mostly importantly,  the parameter relating to “proportion of 
individuals susceptible to OW effects” relates only to the colony of interest  (meaning all individuals 
from other colonies are displaced from footprints within simulations, thereby increasing densities in 
surrounding areas). Conspecifics are not simulated in detail within the IBM so not controlled at a 
granular level, being limited to responsive to OWF or not (conceptually proportions of 1 or 0). Given 
the practical impact of OWF on the target population is largely due to density dependency, which 
includes conspecifics, the repulsion of the target population from the small area of OWF has a 
relatively small contribution to density dependence/competition. As a result, the impact of the OWFs 
upon levels of competition suffered by the focal colony within the model may be fairly insensitive to 
this parameter - -  because it relates specifically to only the level of displacement experienced by the 
focal colony, and therefore does not affect the potential increase in competition arising from birds 
from other colonies that were subjected to a 100% displacement rate (and the number of birds arising 
from non- focal colonies will be far larger than the number of birds from the focal colony). Secondly, 
the IBM has been designed (WP1) for the agents to behave in response to energy requirements – put 
simply, poorer feeding conditions leads to more feeding activity, subject to some constraints e.g. 
day- length. Consequently, small increases in competition are relatively easily compensated for with 
more feeding and less inactivity given that initially the birds are relatively inactive (Table 1). An IBM 
without this responsive behaviour would be unduly naïve – these IBM design features and others are 
detailed in the WP2 documentation. 

SA results (whichever SA method was used) indicated highest sensitivity of the OW impact on adult 
survival to initial adult mass (M3), followed by mortality threshold, with substantially lower sensitivity 
to the remaining five parameters. This is also logical since mortality is directly calculated, for both 
baseline and impacted scenarios, by determining whether final mass (which will be dependent on 
initial mass) is below the mortality threshold.   Again, this has consequences for less data- rich 
species where there is less reliable data on key inputs such as initial body mass, while mortality 
threshold may be little more than an informed guess.  

A key choice within our analysis was the number of agents simulated per parameter combination, 
which represents a balance between the precision (and hence stability) of aggregate metrics of 
interest (such as M1, M2 and M3) and computational effort. We investigated robustness of our results 
to the choice of this value in a number of different ways. Bootstrap sample errors and R- squared 
values of SA models indicate that a very large number of agents (much larger than the maximum 
value of 8000 considered here) may be needed in order to yield stable estimates for detailed 
differences between parameter combinations, because the inter- agent variability in outputs is much 
larger than the variability in mean outputs between parameter combinations. The reason that a 
relatively large number of agents is needed in order to produce stable results in key outputs of 
interest is because these outputs focus on relatively subtle differences between windfarm and 
baseline conditions – these differences are typically much smaller than the assumed levels of 
baseline inter- individual variation, which means that a substantial number of agents is required in 
order to estimate these differences with a reasonable level of precision. However, the key qualitative 
results of the SA, in relation to the relative importance of different parameters, emerge strongly from 
the SA, and appear, based on the limited investigation that was feasible here, to be robust to the 
number of agents, suggesting that the key findings of the SA obtained here would still be likely to 
hold if a larger number of agents were used. 
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5. Recommendations for future work

5.1 Further research to address evidence gaps highlighted by SA 
The SA indicated that key DisNBS model outputs relevant to OW effects were sensitive to estimates 
of energy costs of activities (active, inactive, diving), initial mass and mortality threshold. The 
outputs considered related to direct OW effects on mortality and to OW effects on mass change 
(which provide a proxy for OW effects on productivity).  

Energetics equations: The IBM is at its heart an energetics model, and the energetics equations 
associated with behavioural states and the environmental conditions are clearly key components. 
Published equations were used here which were simple in form, combined independently within days, 
and with crude measures of uncertainty. The simplicity of the equations is likely justified, but the 
uncertainty warrants further consideration. For example, without constraints imposed, the energetics 
components in isolation, and particularly combined, permit nonsensical values with non- negligible 
probability. An integrated model with uncertainty would provide more stable results. Further, a key 
design element of the IBM is the rebalancing of states in response to the current energy intake e.g. 
more foraging to compensate for low energy intake. This is not well understood and educated 
guesses are implemented here e.g. rebalancing is a function of the previous day’s success.  

Understanding more about the energy costs of free- ranging non- breeding seabirds is clearly critical 
to reducing uncertainty in model predictions and hence reducing consenting risk. This is particularly 
important for activities that constitute a large proportion of daily energy use and intake, through the 
combination of high rates and/or high time investment. While common guillemots are relatively well 
studied, the current estimates of energetic costs come from studies conducted in the laboratory on 
captive birds over 30 years ago (Croll & McLaren, 1993). Furthermore, the assignment of time to 
behaviour while using more up to date tools, is still subject to considerable uncertainty as data from 
biologgers is interpreted without validation. Improved biologging devices are becoming available all 
the time and can be used to improve time budgets as well as to measure key environmental 
parameters experienced by the birds relevant to energy cost estimation (e.g. SST).  Data from the 
current Aukestra project will provide additional information for guillemots and razorbills, but data 
gaps will remain for other species (such as red throated diver). Other approaches can be used to 
estimate energetic costs directly in free- ranging birds, such as the use of accelerometry or in 
particular heart rate, which is well suited for the non- breeding season (Green, 2011). Detailed 
biophysical modelling might also allow for improved estimates of energetic costs for non- breeding 
seabirds, and such approaches have been applied to guillemots (e.g. Clairbaux et al., 2021). Future 
work could investigate the combined effects of environmental conditions on energy costs and time 
budgets on non- breeding seabirds via this approach. As noted above, this will be particularly 
important for species where there is not any equivalent laboratory data (e.g. red- throated diver) for 
which a combination of allometric data for Basal Metabolic Rate (BMR; again primarily based on old, 
captive and laboratory studies) and assumptions about BMR- multipliers for activity are currently 
used to estimate activity costs (Dunn et al., 2023). Laboratory studies of energetic costs could also 
provide valuable information for unstudied species, and improve allometric models.  

Mortality thresholds and initial body mass: Understanding mortality thresholds is more challenging 
since gold- standard empirical data would likely involve forced starvation of healthy  birds, an 
experiment unlikely to pass ethical review or regulations. That said, current understanding of 
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mortality thresholds comes from incidental interpretation rather than directed data collection. It may 
be that more comprehensive weighing of birds captured at sea during non- breeding periods, found 
stranded on land, accidentally entangled dead or alive in fishing gear or found recently dead on land 
could all improve understanding in this area. It was clear from the development of the model and the 
process to estimate starting parameters that data and understanding of this key aspect of seabird 
biology were extremely limited. It is also unclear, in the absence of evidence empirical, whether the 
mortality threshold should be specified in relation to absolute mass or relative mass change.  Initial 
body mass would be far easier to quantify with existing methods, with a lack of data rather than a 
lack of methodologies being the limitation here.  

OWF redistribution: The SA results did not indicate high sensitivity to the proportion of individuals 
susceptible to displacement, but this result should be interpreted carefully, since this parameter 
relates to individuals from the colony of interest. The low sensitivity may arise from two reasons 
previously indicated (section 4): because OW effects on competition are dominated by OW effects on 
individuals from other colonies, which are not determined by this parameter , and because feeding 
behaviour is dynamic to match energy intake, which dampens counterfactual differences by design. 
In addition, the redistribution function here was a simple exclusion as it is not known in greater detail,  
although the IBM is very general in how these can be parameterised. By extension, parameterisation 
for the various conspecific populations could be very detailed, and potentially influential, but not able 
to be implemented here. Future research around the frequency, scale and form of displacement is 
therefore still likely to be key in informing the use and future development of the DisNBS model .  

5.2 Further work on uncertainty and sensitivity analysis 
The uncertainty and sensitivity analyses that we have conducted here have necessarily been 
relatively limited, due to the tight timelines of the project and the inherently computationally 
intensive nature of the individual- based models. A number of key strands of further work, to extend 
and refine the sensitivity and uncertainty analysis,  would, however, be valuable. 

Application of alternative sensitivity analysis approaches, such as Sobol indices, that have potential 
to provide outputs that more informative and interpretable than those derived using regression trees 
and random forests. These approaches depend upon being able to specify the number of model runs 
that are required in advance, and so were not viable for this study, but may be feasible to use in future 
work. Sensitivity analysis methods that are designed to be applied directly to stochastic model 
outputs (Baker et al., 2022) would also be worth investigating, since this would avoid the need to, as 
in this study, average across agents in order to provide outputs that can be regarded as approximately 
deterministic. 

Quantifying the impacts of uncertainty in population- level parameters, and including these within the 
uncertainty analysis – the focus here has been on sensitivity to, and inter- individual variability in, the 
model parameters, but it is also important to consider population- level uncertainty within these 
parameters. We have not attempted this here because of the lack of available published information 
on levels of uncertainty (rather than variability) for these parameters. Expert elicitation would provide 
a formal mechanism to quantify the uncertainty in these parameters from expert judgement where 
this is possible based on the current evidence base, but it is important to note that it is not a substitute 
for empirical data collection and will only be appropriate for those parameters for which relevant 
evidence exists. 
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Consider uncertainty and sensitivity in relation to spatial and spatio- temporal forcing variables that 
are inputs to the model, such as bird distribution maps, competition maps and sea surface 
temperature maps. The bird distribution and competition maps for guillemot that have been used 
here are derived from the GLS- based colony- specific distribution maps developed by Buckingham 
(2022). These were extended within the ORJIP AppSaS project (Butler et al., 2024) to account for the 
uncertainty associated with converting each GLS light level record into an estimated location (a key 
source of uncertainty within GLS tracking data) via a simulated- based approach, and developed into 
an R tool (the ANBS tool; Jones et al., 2024). By using these simulated outputs we could account for 
uncertainty within two of the key model inputs (bird distribution, competition maps).  The Aukestra 
project, which is currently underway, will produce refined versions of these monthly distribution 
maps, and associated uncertainties. Uncertainty in the maps produced by Aukestra is anticipated to 
be lower than in the current maps, because they will use additional tracking data and a wider range 
of auxiliary data, and will exploit developments in quantitative methodology Information on 
uncertainty in SST is also available, and it would be possible to account for this uncertainty within 
the model, although there may be a computational cost associated with this. There may also be 
advantages in using higher resolution data on SST within the model.  Using the same source of SST 
data for GLS location estimates in the underlying utilisation distribution maps and in the IBM would 
be helpful in ensuring that differences in bias (from different SST sources) was accounted for   

Quantifying sensitivity and uncertainty with the context of species and populations other than those 
considered here: this is dependent upon parameterizing the model for these species and populations, 
as shown in the WP2 documentation and case studies, where guillemot for Isle of May and red 
throated divers in the North Sea are parameterised. The IBM offers a framework and toolset for the 
relatively rapid development of IBMs for general species and scenarios, where a protracted bespoke 
programming exercise would typically be required. However, this does not obviate the need for 
sensible parameter inputs and the detailed specification of certain functions -  energetics equations 
being a fundamental example, albeit not necessarily complex in form. Many of sensitivities shown 
here are likely to transfer to other species given they relate to these fundamental energetics 
equations. Others, such as the OWF impact however, would be expected to differ given the 
dependency here on conspecifics. The red throated diver study is a case in point, where the WP2 
case study has no conspecifics and a proportionally larger OWF displacement of the target 
population. The compensatory rebalancing of behaviours between counterfactuals is required to be 
larger, and tends to be less effective, as a consequence.  
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Appendix A. High-performance computing 
The sensitivity analysis for simulations using the newly built R package “roamR” was carried out 
using the UK crop diversity high performance cluster. The package and its dependencies were 
installed and compiled using conda and mamba designed for use in a linux operating system. For 
some of the R package such as “spaths” the configuration file (Makeconf) within the R library folder 
needed to be modified with additional information regarding the version of C++. Once the packages 
were compiled the R script was tested using an interactive job (job here refers to a task in Slurm) 
option to rule out any warnings and errors. Once the script ran without any issue the simulations were 
deployed using batch files. One batch file contained a loop that sequentially called every parameter 
combination and the other batch file that was designed to simulate a fixed number of birds using the 
new R package “RoamR” as an array job. An array job is designed to run the same script multiple 
times, each time is called a single task.  Every array job has a unique ID and generates an index 
number corresponding to the number of times the array job is called. In our case it was written to run 
the same R script 80 times for a single parameter combination,10 tasks at one time depending on the 
availability of the resources, each time simulating 100 agents.   

The resources are made available via nodes that are specific to the type of job also referred as 
partition or queue within the batch script. Depending on the type of partition the job was allocated to 
nodes. The job types include short, medium, long, himem (high memory), hicpu and gpu mostly 
referring to the runtime. For example, a short partition allows allocation of jobs without waiting for 
long hours. If unspecified the default choice is medium. 

In our case most of our batch script was run on nodes that were specific for a short job. The short 
partition job was allocated between 6 such nodes with a fixed number of CPU cores and memory 
named black, cordelia, buffy, carrow, greyblack and grindelwald, depending on their availability for 
usage among all HPC users. The allocating of jobs and resources was done using Slurm making sure 
all processors within clusters are used. 
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Appendix B. SA results with 4000 agents 
Within Section 3.4 and Figures 1- 6 we present SA results using 8000 agents. Here, we present the 
corresponding results based on 4000 agents. 
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Figure B1. As Figure 2 but based on running SA using 4000 rather than 8000 agents.  
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Figure B2. As Figure 3 but based on running SA using 4000 rather than 8000 agents.  
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Figure B3.  As Figure 4 but based on running SA using 4000 rather than 8000 agents.  
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Figure B4. As Figure 5 but based on running SA using 4000 rather than 8000 agents. 
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Figure B5.  As Figure 6 but based on running SA using 4000 rather than 8000 agents.  
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Figure B6. As Figure 7 but based on running SA using 4000 rather than 8000 agents. 
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