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Abstract

The results in this report represent the application of the modelling framework developed
under WP2 of the InTaS project funded by the Carbon Trust as part of the broader ORJIP
initiative. The framework combines, for the first time, the statistical inference methods tradi-
tionally used in isolation for survey and telemetry data. It aims to accurately and precisely
apportion the exposure of particular seabird colonies and age stages, to anthropogenic offshore
disturbance. Atlantic Gannets (Morus bassanus) were identified as one of four priority species
during the literature survey undertaken in WP1 of the same project. A large-scale proof of
concept was agreed for the east coast of Scotland. Survey and telemetry data (from both adults
and juveniles) were collated for similar spatial and temporal extents. The locations and sizes
of gannet colonies were provided and used to guide the habitat modelling and apportionment
algorithm. Model selection was carried out to explore combinations of nine environmental co-
variates that most parsimoniously explained the pooled telemetry and survey data sets. Using
the best model, a comparison of survey-only, telemetry-only and joint survey-telemetry analyses
confirmed the conclusions of simulation experiments from WP2 suggesting that the convergence
and precision of joint analyses are superior to the single-data analyses. The covariates retained
in the selected model indicated avoidance of gravelly and muddy substrates, and attraction to-
wards highly stratified pelagic environments as indicated by features such as potential energy
and thermal fronts. We present results on the spatial distribution of usage by different colonies
and size ages and present an illustrative calculation of apportionment for an exemplar off-shore
region, along with a software tool that can use the results of our modelling for any area of interest
for potential offshore development.
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Figure 1: An adult Northern Gannet (Morus bassanus). By Andreas Trepte - Own work
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1 Overview

Different types of data carry more or less information about particular aspects of a seabird species’
distribution. If the interest is in broad-scale maps of distribution representing the aggregate usage
of particular regions of space by all birds of a given species, then survey data can be an effective
source of information. These may provide estimates about the usage within a region of interest (if
the surveys are targeted geographically), or they may provide wider comparisons between the region
of interest and the rest of the distribution of the species. Integration of data from multiple surveys,
particularly if combined with environmental covariates into habitat models (Jason Matthiopoulos,
Fieberg, and Aarts 2020) can provide spatial breadth and the ability for such comparisons. Taking
further steps along the path of data integration (J. Matthiopoulos et al. 2022) is essential if we wish
to apportion usage by colony or breeding stage. This requires folding into the analysis individually-
referenced data, the prime example of which are telemetry data on individual movement.

1.1 Study objectives

Here we aimed to:

1. Analyse patterns of spatial utilisation of the Scottish north sea by gannet.
2. Deduce which environmental variables are primarily driving this distribution.
3. Generate reconstructions of spatial usage by different colonies and age classes.
4. Demonstrate apportionment results with associated credible intervals for a particular area of

development.
5. Encode the above in reproducible code so that the data, covariates and areas of interest can

be altered, allowing the analysis to be re-run expediently.

Objective 1 aims to generate the best possible description of distribution. To this end, we have
used survey and telemetry data that combine breadth and resolution. Objective 2 uses model
selection among an extensive array of candidate models, to decide which environmental variables
are covariates of this species distribution. We visualise the spatial effect of all the variables retained
in the final model. We also present a comparison of the results of fitting the two single data models
with the results of the best joint model selected under Objective 2. A comprehensive graphical view
of all colonies and both age stages is produced under Objective 3, using the best joint model only.
In the case of gannet, telemetry data were available for both adults and juveniles. So, the modelling
task is considerably simpler compared to cases where the utilisation parameters for juveniles need
to be indirectly inferred from the combination of aggregate survey data and adult telemetry only.
Under objective 4, using the best joint model only, we demonstrate how to apportion the spatial
overlap of marine installations with the distribution of animals belonging to different ages and
colonies. Specifically, we consider exposure of different breeding stages and colonies, by calculating
the amount of spatial usage by each population component that is enclosed in an arbitrary boundary
at sea. Crucially for impact assessment purposes, this apportionment of effects is accompanied by
spatially explicit measures of uncertainty. The Bayesian framework employed here is ideal for this
purpose because parametric bootstrapping of the spatial uncertainty can be performed directly by
sampling from the posterior distribution of the fitted models. Finally, we provide instructions and
appendices with code to facilitate running the apportionment functions from a given model object
and within a given offshore area.
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Table 1: Characteristics of the colonies included in this analysis (Based on Seabird2000 survey
data).

Colony Longitude Latitude Breeding pairs
Fair Isle -1.63 59.53 1123
Forth Islands - Bass Rock to Haystack -3.14 56.03 44110
Foula -2.07 60.12 723
Noss NNR -1.02 60.15 8017
Rosehearty to Bay of Cullen -2.41 57.67 1085
Sule Stack -4.5 59.02 5137

1.2 Relevant facts about gannet natural history

Gannets (Figure 1) are a large seabird breeding in a few, mostly large, colonies around the North
Atlantic though most birds breed around Britain and Ireland. They forage on a wide variety of
pelagic fish prey which they mostly catch by plunge-diving into the sea from height. They also
foraged on discards from fishing boats (Skov and Durinck 2001).The practice of discarding has
been reduced since 2015 until a complete “discard ban” in the European Union was introduced
[and enforced] in Jan 2019. Consequently, discards are no longer an important source of food and
feeding strategies have had to adapt. Woodward et al. (2019) reported summary statistics for the
foraging range of tracked gannets from their breeding colonies across multiple studies. The mean
foraging range (± SD) was 120.4 km (± 50.0). However, the mean of the maximum foraging ranges
across the studies was 315.2 km (± 194.2), showing the birds can, and do, forage much further
than the mean value. Gannets from different breeding colonies forage in different areas of sea with
little overlap in the areas used (Wakefield et al. 2013). Thus, foraging range can vary between
colonies. In addition, there are sex differences in the foraging behaviour of gannets, with female
birds foraging further and for longer from colonies than male birds (Stauss et al. 2012).

In total, the analysis examined 6 colonies whose size ranged from 723 to 44110 breeding pairs (Table
1). The data originate from the Seabird2000 surveys in order to align with the CEF, however, these
analyses are now automated and spatial predictions can be readily updated with new population
data.

2 Environmental covariates

A total of nine environmental covariates were considered for this analysis (Figure 2). Their deriva-
tion and interpretation is described in detail in the Data report generated for this project under
WP1. Briefly, the variables were: (1) depth, (2) minimum distance to coast, (3) seabed slope,
(4) proportion of gravel, (5) sand:mud ratio, (6) potential energy anomaly (PEA), (7) sea surface
temperature, (8) thermal front gradient density (TFGD), and (9) net primary production (alpha-
chlorophyll - NPP). To facilitate comparisons between the magnitude of influence and to help with
model convergence, all covariates were standardized to mean zero and standard deviation one.
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Figure 2: The candidate covariate layers considered in this analysis. All covariates are standardised
to mean zero and sd=1.
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2.1 Derived covariates

The main derived covariates required for models of central-place foragers are the maps of distance-to-
colony. A stack of rasters is required, one raster for every colony to be included in the modelling. The
nominal positions of the colonies are approximate, and recorded in (Table 1). This is a requirement
regardless of whether a particular colony is associated with tagging data or not. The distances were
calculated but not standardised. A synoptic view of the accessibility of different points at sea can
be obtained by weighting the accessibility of each colony by its relative population size (Figure 3).
Note that this accessibility model is for illustrative purposes only, but it is numerically based on
the parameter value retrieved for adults in the final model selected in this analysis (Table 4).

Gannet
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Figure 3: A visualisation of a possible accessibility surface for the gannet metapopulation in the
east coast of Scotland. Here, we used a negative exponential distance function for each colony and
weighted the accessibility of each colony by its relative population size. The rate of decay with
distance is the corresponding parameter retrieved for adults in the final model (see below).

2.2 Survey transects

A total of 8 survey projects were combined into the pooled data set, comprising 45 surveys from
2012 to 2017. These were slightly different from the surveys described in the data report of WP1.
Despite there being more surveys close to the east coast of mainland Scotland, these had specifically
excluded seabird records. In contrast, additional survey transects were acquired for a large offshore
area east of Aberdeenshire (Figure 4). The detections of gannets were made at the level of individual
birds, so it was possible to get accurate counts for particular transect locations. The resulting span
and resolution of the survey data provided both contrast and detail for the models to work on.
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Figure 4: The survey transects considered in the analysis (black lines) and the detections of
individuals from the study species (red dots).
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Table 2: Telemetry locations by colony and breeding stage

Adults Juveniles
BASS 90503 184905

2.3 Tracking data
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Figure 5: The telemetry data from adult individuals (shown in purple) and juveniles (shown in
pink).

The telemetry dataset comprised locations from 241 tagged individuals, and the distribution of data
by colony and breeding stage is shown in (Table 2). Importantly, not all colonies will be associated
with tagged individuals and the number of individuals tagged in each colony will not be proportional
to that colony’s size (as reported in (Table 1)). Similarly, the tags were deployed on a sample of
individuals that is not representative of population structure (males/females, adults/juveniles).
These imbalances in sampling effort are accounted for in the modelling and prediction stage so that
spatial apportioning results are unbiased, but of course, colonies and breeding stages with more
data will be characterised with more precision in these results.

3 Inference

The telemetry and survey data were modelled under a joint likelihood in the Bayesian framework
described and validated in the report from WP2 of this project. The objective of the joint model was

8



to better reconcile the aggregate usage (as observed via survey data) with the colony and age-specific
data (as observed via the tagging data). The JAGS code for the model (see Appendix I for code) is a
direct extension of the basic model outlined in WP2, using more than two candidate covariates and
more than two colonies. We have additionally made the assumption that both juveniles and adults
respond in the same direction to different covariates (i.e., they prefer or avoid them), although the
strength of those preferences can be very different for the two breeding stages.

3.1 Model selection on Joint model

Unlike the proof-of-concept analyses presented in the WP2 report, with real data, we cannot know
a-priori which of the candidate covariates are relevant for the seabirds. We therefore followed a
forward addition model selection approach using the Deviance Information Criterion to balance
goodness of fit with parsimony. Each model was given a unique code indicating how many and
which covariates were included. For example, 3.568 indicates a model with the three covariates
SandMud, PEA and Thermal included in that order. All models had an intercept and distance from
the colony was retained by default, since it is known (at least for provisioning adults) that they will
have an association with their colony. This association is likely to be weaker for juveniles, so that
was encoded in the prior for the juvenile parameter for distance to colony (see priors for parameters
aD[1] and aD[2] in Appendix I).

A total of 36 models were examined (Table 3) and the best model was 4.6584.

The selected model showed avoidance of gravel and mud. We found preference for thermal fronts
and high values of potential energy anomaly, indicating that gannets have a preference for highly
stratified pelagic environments (Table 4).

3.2 Comparison with single-datatype models

Since the main methodological contribution of this project is the combination of survey and teleme-
try data, we examined the two single-datatype models corresponding to the best joint model
(4.6584). We were interested in examining first, whether these models would converge, second,
whether they would arrive at similar parameter estimates and third, if these estimates would be
characterised by similar precision as those delivered by the joint model. In the present area of ap-
plication, a model that does not converge indicates overparameterisation, i.e. data insufficiency, for
the number of variables included. We decided to plot posteriors for parameters, even if the single-
datatype models did not converge. These information-rich comparisons are illustrated in (Figure 6).
In addition to parameters for the three models examined, we also plot the priors provided to the
model as way of examining relative increases in parameter precision in the final results. Compared
to the prior distributions, all three models resulted in posteriors with higher precision but different
median estimates. The three models yielded different posteriors, although all three of them were
more precise than the priors. The joint model often, but not always, gave estimates intermediate
to the other two models’.
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Table 3: The different models compared in the study. For each model, asterisks indicate the
participating covariates. Models are sorted by increasing delta-DIC value (the best model is at the
top). Wherever an NA value is cited in place of a delta-DIC, the model failed to converge.

Mod Dpth DCst Slp Grvl SndMd PEA SST Thrml NPP DCol DDIC
29 4.6584 * * * * * 0
36 5.65849 * * * * * * 0
32 5.65841 * * * * * * 1
33 5.65842 * * * * * * 1
30 4.6587 * * * * * 19
31 4.6589 * * * * * 32
26 4.6581 * * * * * 33
24 3.658 * * * * 39
27 4.6582 * * * * * 39
22 3.654 * * * * 174
23 3.657 * * * * 199
20 3.652 * * * * 201
25 3.659 * * * * 206
21 3.653 * * * * 208
15 2.65 * * * 223
19 3.651 * * * * 223
11 2.61 * * * 433
14 2.64 * * * 498
12 2.62 * * * 534
16 2.67 * * * 534
13 2.63 * * * 542
17 2.68 * * * 562
18 2.69 * * * 562
7 1.6 * * 566
4 1.3 * * 576
8 1.7 * * 830
5 1.4 * * 847
10 1.9 * * 1101
3 1.2 * * 1200
9 1.8 * * 1212
1 0.0 * 1254
2 1.1 * * NA
6 1.5 * * NA
28 4.6583 * * * * * NA
34 5.65843 * * * * * * NA
35 5.65847 * * * * * * NA
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Table 4: Parameter median estimates from the posteriors of the joint model, accompanied by their
95% credible intervals.

Description 2.5% Median 97.5%
Intercept Juveniles -23.664984 -17.681116 -14.822085
Intercept Adults -12.355127 -12.223362 -12.093638
Bathymetry Juveniles 0 0 0
Bathymetry Adults 0 0 0
Distance from Coast Juveniles 0 0 0
Distance from Coast Adults 0 0 0
Slope Juveniles 0 0 0
Slope Adults 0 0 0
Gravel Juveniles -0.410399 -0.24765 -0.11437
Gravel Adults -0.299867 -0.225707 -0.161517
Mud:Sand Juveniles -0.316775 -0.211082 -0.105572
Mud:Sand Adults -0.653345 -0.604089 -0.547394
PE Anomaly Juveniles 0.401083 0.701439 1.10396
PE Anomaly Adults 0.851008 1.021483 1.190405
SST Juveniles 0 0 0
SST Adults 0 0 0
Therm Fronts Juveniles 0.33164 0.488126 0.647656
Therm Fronts Adults 0.199661 0.246695 0.286109
Chlorophyl Juveniles 0 0 0
Chlorophyl Adults 0 0 0
Dist to colony Juveniles 0.001729 0.008376 0.014921
Dist to colony Adults 0.009176 0.016793 0.024455
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Figure 6: Comparison of the Prior distributions for each parameter, with the posteriors generated
from two single-datatype models (Survey and Telemetry) and the Joint model. Posteriors from any
non-converging models are also shown for comparison
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Table 5: Exposure to development area by colony and age stage. This is unweighted exposure,
representing the percentage of usage by this particular age class from the given colony.

Colony Med Juv % 95% CI Med Adult % 95% CI
Fair Isle 1.12 ( 0.49 - 2.02 ) 0.18 ( 0.09 - 0.29 )
Forth Islands - Bass Rock to Haystack 6.03 ( 2.47 - 10.74 ) 7.04 ( 3.82 - 10.64 )
Foula 0.97 ( 0.36 - 1.84 ) 0.12 ( 0.05 - 0.22 )
Noss NNR 0.93 ( 0.34 - 1.78 ) 0.11 ( 0.05 - 0.2 )
Rosehearty to Bay of Cullen 2.3 ( 1.36 - 3.17 ) 0.93 ( 0.86 - 1.01 )
Sule Stack 1.24 ( 0.54 - 2.2 ) 0.21 ( 0.1 - 0.34 )

Table 6: Exposure to development area by colony and age stage. This is weighted exposure,
representing the usage of the area inside boundary of interest by this particular age class from the
given colony as a percentage of total population usage.

Colony Med Juv % 95% CI Med Adult % 95% CI
Fair Isle 0.01 ( 0 - 0.02 ) 0 ( 0 - 0 )
Forth Islands - Bass Rock to Haystack 2.21 ( 0.9 - 3.93 ) 2.58 ( 1.4 - 3.9 )
Foula 0.01 ( 0 - 0.01 ) 0 ( 0 - 0 )
Noss NNR 0.06 ( 0.02 - 0.12 ) 0.01 ( 0 - 0.01 )
Rosehearty to Bay of Cullen 0.02 ( 0.01 - 0.03 ) 0.01 ( 0.01 - 0.01 )
Sule Stack 0.05 ( 0.02 - 0.09 ) 0.01 ( 0 - 0.01 )

4 Spatial prediction

4.1 Usage maps

The joint model can be used to generate spatial predictions for the marine usage of individuals
(both breeders and non-breeders) from all colonies individually, or together. Since the model also
estimates the relative proportion of adults and juveniles across the sea, the results can be weighted
and aggregated in different ways. Any such visualisations are possible, but in (Figure 7) we show
individual plots for only two colonies, aggregate plots for Adults and Juveniles and combined plots
for the whole population.

4.2 Apportioning impact

The final step in producing the necessary results is to estimate the usage of a given region in space,
by colony and population component. For the purposes of illustration, we introduce an arbitrary
(and large) region (Figure 8). The use of functionality in the TrackTrans package for generating
apportioning estimates is straightforward, and explained in Appendix II.

The package uses parametric bootstrapping from the posterior of the joint model to generate median
and 95% CIs for the usage of the candidate area by different individuals from different colonies.
These can be formulated as two types of exposure. First, we can extract the unweighted exposure
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Figure 7: Predictions of spatial usage from the joint model. We show juvenile and adult maps for
two colonies, total juvenile and adult usage maps, and the aggregate map from all colonies and both
breeding stages. To facilitate visualisation, colours are in logarithmic scale.White contours indicate
the hotspots of expected usage in linear scale.
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Figure 8: An example of a marine region that might be used to interrogate the model about
apportioning usage.
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(Table 5), representing the percentage of the usage of adults/juveniles from a given colony found
inside the boundary. So, for example, the value 0.18 in (Table 5) indicates that adults from Fair
Isle spend 0.18% of their marine foraging usage inside the area of interest.

Second, we can extract the weighted exposure (Table 6), representing the percentage of the usage
of adults/juveniles from a given colony found inside the boundary. So, for example, the value 0 in
(Table 6) indicates that 0% the total usage of the population is attributable to adults from Fair Isle
spending their time inside the area of interest.

Note that the accompanying 95% credible intervals in the above tables need to be recalculated
by boostrapping every time the boundaries of the region are changed since, due to spatial auto-
correlation, the individual CIs that may be generated for any given two cells in the map are not
independent, and therefore not additive (in the way that median predictions are). Given a file with
the post processing data from a fitted model object, the necessary code for recalculating exposure
for any given boundary is given in Appendix II. The necessary data files for running this code will be
provided along with the outputs of this project for use by other agencies such as CEH and BIOSS.

5 Appendix I: JAGS implemetation of joint model for telemetry
& survey data

jointJAGS <- "model{

### MAIN LOOP ###

# Survey data part
for(i in 1:nn) # Data row loop

{
for(s in 1:2) # Age-stage loop
{
lambLoc[i,s]<-exp(a0[s]+

a1[s]*DepthTr[i]+
a2[s]*SlopeTr[i]+
a3[s]*DistCoastTr[i]+
a4[s]*GravelTr[i]+
a5[s]*SandMudTr[i]+
a6[s]*PEATr[i]+
a7[s]*SSTTr[i]+
a8[s]*ThermalTr[i]+
a9[s]*NPPTr[i])

for(c in 1:nC) # Colony loop
{

diLa[i,s,c]<-popS[c]*exp(-aD[s]*DistTr[i,c])
}

}
# labda
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lambda[i]<- lambLoc[i,2]*sum(diLa[i,2,1:nC])+lambLoc[i,1]*sum(diLa[i,1,1:nC])
Count[i]~dpois(lambda[i])
}

# Telemetry data part
for(j in 1:pts)

{
btilde[j,1]<- a1[St[j]]*Depth.x[j]+

a2[St[j]]*Slope.x[j]+
a3[St[j]]*DistCoast.x[j]+
a4[St[j]]*Gravel.x[j]+
a5[St[j]]*SandMud.x[j]+
a6[St[j]]*PEA.x[j]+
a7[St[j]]*SST.x[j]+
a8[St[j]]*Thermal.x[j]+
a9[St[j]]*NPP.x[j]-
aD[St[j]]*ColonyDist.x[j]

btilde[j,2]<- a1[St[j]]*Depth.y[j]+
a2[St[j]]*Slope.y[j]+
a3[St[j]]*DistCoast.y[j]+
a4[St[j]]*Gravel.y[j]+
a5[St[j]]*SandMud.y[j]+
a6[St[j]]*PEA.y[j]+
a7[St[j]]*SST.y[j]+
a8[St[j]]*Thermal.y[j]+
a9[St[j]]*NPP.y[j]-
aD[St[j]]*ColonyDist.y[j]

mu[j,1]<-xy0[j,1]+(thinTg)*Gaˆ2/2*btilde[j,1]
mu[j,2]<-xy0[j,2]+(thinTg)*Gaˆ2/2*btilde[j,2]

xy1[j,1]~dnorm(mu[j,1],1/(thinTg*Gaˆ2))
xy1[j,2]~dnorm(mu[j,2],1/(thinTg*Gaˆ2))
}

# Priors

a0[2]~dnorm(0,0.1)
a1[2]~dnorm(0,0.1)
a2[2]~dnorm(0,0.1)
a3[2]~dnorm(0,0.1)
a4[2]~dnorm(0,0.1)
a5[2]~dnorm(0,0.1)
a6[2]~dnorm(0,0.1)
a7[2]~dnorm(0,0.1)
a8[2]~dnorm(0,0.1)
a9[2]~dnorm(0,0.1)

17



for(i in 1:10) {sc[i]~dgamma(10,10)}

a0[1]<-sc[1]*a0[2]
a1[1]<-sc[2]*a1[2]
a2[1]<-sc[3]*a2[2]
a3[1]<-sc[4]*a3[2]
a4[1]<-sc[5]*a4[2]
a5[1]<-sc[6]*a5[2]
a6[1]<-sc[7]*a6[2]
a7[1]<-sc[8]*a7[2]
a8[1]<-sc[9]*a8[2]
a9[1]<-sc[10]*a9[2]

aD[1]~dgamma(1,1) # Distance coefficient for juvs
aDdummy~dgamma(1,1)
aD[2]<-aD[1]+aDdummy # Distance coefficient for adults

Ga~dgamma(10,0.007)

#data# nn,nC, popS,Count,DepthTr,SandMudTr,SlopeTr,DistCoastTr,GravelTr,
#data# DistTr, PEATr, SSTTr, ThermalTr, NPPTr
#data# pts, xy0, xy1, Depth.x, Depth.y, SandMud.x, SandMud.y, DistCoast.x,DistCoast.y
#data# Gravel.x,Gravel.y,Slope.x,Slope.y,ColonyDist.x,ColonyDist.y
#data# PEA.x, PEA.y, SST.x, SST.y, Thermal.x, Thermal.y, NPP.x, NPP.y
#data# thinTg, St

#monitor# a0,a1,a2, a3, a4, a5, a6, a7, a8, a9, aD, Ga, dic
}"

6 Appendix II: Usage of R functions for the generation of appor-
tioning predictions for a given marine boundary

The key function for going this is TrackTrans::rApportion() which uses parametric bootstrapping
from the model’s posterior to generate an arbitrary number of realisations of usage. The number
of bootstraps is specified by the parameter dr. The necessary samples from the posterior, and
environmental covariates are stored on the file SpeciesPostData.rda The boundary of the area
of interest also needs to be specified and, in the example of the main text we use an arbitrary
boundary (Figure 8).The results comprise weighted and unweighted proportions of usage (median
and lower/upper credible intervals) for each of the colonies and each of the two breeding stages.

# Import and unpack the post-processing data files for the species
load("GannetPostData.rda")
covariates<-list()
for(i in 1:length(postData$wrappedCovs))

{covariates[[i]]<-rast(postData$wrappedCovs[[i]])}
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dis<-list()
for(i in 1:length(postData$wrappedDis))

{dis[[i]]<-rast(postData$wrappedDis[[i]])}

# Define or import polygon of interest
polLong<-c(-1.5,-1,-0.95,-0.6,-1,-1.5,-1.5)
polLat<-c(56,56,56.2,56.2,56.6,56.6,56)
polCRS<-crs(bath)
polLongLat<-cbind(polLong,polLat)
pol<-vect(polLongLat, type="polygons",crs=polCRS)

# Call apportioning function and look at results
app<-rApportion(dr=postData$dr, pars=postData$pars, covariates=covariates, dis=dis,

pop=postData$pop, boundary=pol)

app

## $‘Median Unweighted‘
## [,1] [,2]
## [1,] 0.005776201 0.0011847663
## [2,] 0.022064220 0.0224309157
## [3,] 0.004893933 0.0007660225
## [4,] 0.004987244 0.0008069882
## [5,] 0.011774893 0.0059506226
## [6,] 0.006261400 0.0013353925
##
## $‘Lower Unweighted‘
## [,1] [,2]
## [1,] 0.003074746 0.0006434873
## [2,] 0.013169178 0.0155379229
## [3,] 0.002038293 0.0003176335
## [4,] 0.002175628 0.0003558156
## [5,] 0.009243820 0.0055126617
## [6,] 0.003284843 0.0006507369
##
## $‘Upper Unweighted‘
## [,1] [,2]
## [1,] 0.008597900 0.001925633
## [2,] 0.030420978 0.029095110
## [3,] 0.007752509 0.001413193
## [4,] 0.007796234 0.001462169
## [5,] 0.013827633 0.006400966
## [6,] 0.009323247 0.002189096
##
## $‘Median Weighted‘
## [,1] [,2]
## [1,] 5.388050e-05 1.105152e-05
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## [2,] 8.084166e-03 8.218521e-03
## [3,] 2.939043e-05 4.600335e-06
## [4,] 3.321101e-04 5.373889e-05
## [5,] 1.061198e-04 5.362925e-05
## [6,] 2.671718e-04 5.698074e-05
##
## $‘Lower Weighted‘
## [,1] [,2]
## [1,] 2.868129e-05 6.002460e-06
## [2,] 4.825089e-03 5.692979e-03
## [3,] 1.224093e-05 1.907542e-06
## [4,] 1.448793e-04 2.369444e-05
## [5,] 8.330878e-05 4.968218e-05
## [6,] 1.401631e-04 2.776672e-05
##
## $‘Upper Weighted‘
## [,1] [,2]
## [1,] 8.020136e-05 1.796234e-05
## [2,] 1.114602e-02 1.066023e-02
## [3,] 4.655755e-05 8.486907e-06
## [4,] 5.191661e-04 9.736866e-05
## [5,] 1.246198e-04 5.768792e-05
## [6,] 3.978197e-04 9.340797e-05
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