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ORJIP Offshore Wind 

The Offshore Renewables Joint Industry Programme (ORJIP) for Offshore Wind is a collaborative initiative 

that aims to: 

• Fund research to improve our understanding of the effects of offshore wind on the marine 

environment. 

• Reduce the risk of not getting, or delaying consent for, offshore wind developments. 

• Reduce the risk of getting consent with conditions that reduce viability of the project. 

 

The programme pools resources from the private sector and public sector bodies to fund projects that 

provide empirical data to support consenting authorities in evaluating the environmental risk of offshore 

wind. Projects are prioritised and informed by the ORJIP Advisory Network which includes key 

stakeholders, including statutory nature conservation bodies, academics, non-governmental 

organisations and others. 

The current stage is a collaboration between the Carbon Trust, EDF Energy Renewables Limited, Ocean 

Winds UK Limited, Equinor ASA, Ørsted Power (UK) Limited, RWE Offshore Wind GmbH, Shell Global 

Solutions International B.V., SSE Renewables Services (UK) Limited, TotalEnergies OneTech, Crown Estate 

Scotland, Scottish Government (acting through the Offshore Wind Directorate and the Marine Directorate) 

and The Crown Estate Commissioners. 

For further information regarding the ORJIP Offshore Wind programme, please refer to the Carbon Trust 

website, or contact Ivan Savitsky (ivan.savitsky@carbontrust.com) and Žilvinas Valantiejus 

(zilvinas.valantiejus@carbontrust.com). 
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Our mission is to accelerate the move to a decarbonised future.  

We have been climate pioneers for more than 20 years, partnering with leading businesses, governments 

and financial institutions globally. From strategic planning and target setting to activation and 

communication - we are your expert guide to turn your climate ambition into impact.  

We are one global network of 400 experts with offices in the UK, the Netherlands, Germany, South Africa, 
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1. Introduction 

One way to try to quantify displacement mortality, and sources of variation in mortality, is via a 

mechanistic model. Simulations from the mechanistic model can be used to estimate the mortality 

associated with different scenarios, and these results can then be used (WP4) in estimating displacement 

mortality rates. 

We focus here upon using SeabORD, an individual-based model of seabird behaviour, energetics, 

demography and windfarm interactions, to estimate the displacement mortality rates associated with 

different colonies under different wind farm scenarios. SeabORD includes two main mechanisms of 

windfarm interaction: displacement effects (a switch in foraging location as a result of a windfarm) and 

barrier effects (increased flight distances, and hence energetic costs, to reach foraging locations when 

birds avoid flying over windfarms). We refer to the combination of both of these as “displacement 

mortality”. SeabORD can consider either a single windfarm, or the simultaneous effects of multiple 

windfarms, and considers impacts on both chicks and adults. SeabORD directly simulates the impact of 

windfarms on chick mortality. For adults, SeabORD simulates the impact on windfarms on the change in 

body mass over the course of the breeding season and then translates this into impacts on annual adult 

survival via published mass-survival relationships. SeabORD only considers the impacts of windfarm 

interactions during the chick rearing period within the breeding season and is parameterized for four 

species: black-legged kittiwake, common guillemot, razorbill and Atlantic puffin.  

The biological parameters within SeabORD are largely fixed based on expert judgement or published 

values from the literature (Searle et al., 2018). However, the remaining inputs to SeabORD - bird 

distributions maps, colony sizes, and prey maps – need to be specified separately for each colony. In 

addition, there is one input parameter for SeabORD – total prey – that cannot meaningfully be derived 

from expert judgement or the published literature. SeabORD outputs are highly sensitive to the values of 

this parameter, so it is calibrated separately for each colony by selecting the parameter values for “total 

prey” that lead baseline adult and chick survival rates (in the absence of a windfarm) to lie within 

biologically plausible ranges. Because the values of this parameter are calibrated against a range of 

baseline survival rates, a range of plausible parameter values are identified for each colony. Parameters 

from across this range are then used when simulating windfarm impacts via SeabORD, allowing this key 

source of uncertainty to be accounted for within the SeabORD outputs.  

SeabORD simulates changes in adult and chick mortality (and survival) rates, and in a range of other 

quantities: adult mass loss during the chick rearing period is one of the key outputs, because the adult 

mortality and survival rates are derived from this using published relationships. In principle, we could use 

SeabORD to provide model-based estimates of displacement mortality for a wide range of colonies and 

windfarm scenarios, and (via the work in WP4) thereby build up information on typical mortality rates, and 

on the variability in these rates between colonies and windfarms. In practice, SeabORD is a 

computationally intensive model to run, so there would be substantial practical challenges in doing this. 

The recoding of SeabORD into R as part of the Marine Scotland CEF project, which we exploit here, has 

involved improvements to computational efficiency, but realistically complicated runs of SeabORD 

continue to require large amounts of computer time. In addition, the calibration process within SeabORD 

has always required human input, and this is required each time the model is run for a new colony for 

which it has not previously been calibrated. Work within the CEF project to try to automate the calibration 

process revealed additional challenges in doing this – the work aiming to find simple proxies of SeabORD 

outputs that could be used to predict whether SeabORD would produce broadly plausible baseline 

demographic rates for a particular total prey level, but the results suggest that the obvious choices for 

such proxies did not perform well in predicting whether SeabORD would produce plausible baseline 

demography. For the moment, SeabORD therefore continues to require a manual calibration step for each 

colony. 



 

 

Emulation provides a framework for using statistical models to approximate mechanistic models. It uses 

a “training set” of mechanistic model inputs and outputs to build a general model for the relationship 

between the mechanistic model inputs and outputs, and, as such, provides an approximation to the 

mechanistic model. Emulation is typically designed to approximate computationally intensive models 

using much less computationally intensive models, so that the emulator can then be used, predictively, as 

a rapid but approximate substitute for the mechanistic model. As SeabORD is a computationally intensive 

model it is an obvious candidate to be emulated. The types of models used for emulation are generally 

similar to the models that could be used to model relationships in empirical data – for example, multiple 

regression, mixed models, Gaussian processes, random forests and neutral networks. Within the context 

of emulation, the “response variables” are the mechanistic model outputs (or a subset of these), and the 

“explanatory variables” are the mechanistic model inputs (or a subset of these). 

Emulation is not a replacement for mechanistic modelling: the emulator is designed to provide a more 

rapid alternative to the mechanistic model, but at the cost of some loss of accuracy caused by using the 

emulator to approximate the mechanistic model. This accuracy can be increased by using a large training 

set (i.e., more mechanistic model runs), but since the rationale for using the emulator is to reduce 

computational effort, there is a trade-off: more mechanistic model runs will lead the emulator to produce 

a more accurate approximation to the mechanistic model but will take more computational time. In the 

extreme, using an extremely large set of mechanistic model runs would allow us to build an emulator, but 

would also negate the main rationale for using the emulator (computational savings). Using a very small 

number of mechanistic model runs as a training set would represent a major computational saving, but 

would risk producing an emulator that was a poor approximation to the mechanistic model. 

Aside from computational savings, another rationale for using the emulator is that it allows us to examine 

the properties of the mechanistic model. In particular, it allows to examine the extent to which variations 

in the outputs from the mechanistic model can be explained by simple relationships between the model 

inputs and outputs. This is useful in determining the key features of the mechanistic model that are 

influencing the behaviour of the model and may be useful in identifying parts of the model that could be 

simplified without loss of accuracy. 

Within this work package we focus upon using SeabORD, and an emulator of SeabORD, to produce 

estimates of displacement mortality for three species – kittiwake, guillemot and razorbill – under to a 

range of SPAs and windfarm scenarios, and to identify sources and levels of variation in these mortality 

rates within each species. For each species we focus upon attempting to build an emulator of SeabORD 

wind farm impacts that can be applied to all UK SPAs, and, for each SPA, to all wind farms whose 

footprints are in the CEF Data Store and that lie within the foraging range of the SPAs. This represents an 

exceptionally large number of scenarios, so we build the emulator using a much smaller training set of 

SeabORD model runs for each species. For pragmatic purposes, we focus upon three SPAs per species 

and use colony-specific bird distribution maps derived from the maps of Wakefield et al. (2017) and 

upscaled to SPA level within the CEF. Since the vast majority of possible windfarm scenarios involve 

extremely low levels of interaction between windfarm footprint and SPAs, and practical interest lies in 

situations in which there is a fairly substantial interaction with windfarms, we develop the training set 

using windfarm scenarios whose interaction with an SPA (as defined using “totalpinords”) exceeds a 

minimum threshold, and thereby consider the effects of between 5 and 11 windfarm scenarios per SPA 

per species. 

We use the SeabORD training runs to build an emulator for each species, in which we relate the SeabORD 

impacts on adult and chick mortality, and adult mass change, to a range of metrics that summarise the 

characteristics of the windfarm footprint(s), SPA and spatial interaction between SPA and windfarm(s). 

We use this emulator to identify the percentage of variation in impacts that can be explained by these 

characteristics, and to identify the key characteristics that influence the simulated impacts for each 

species. The aim of the emulator is to predict the levels of displacement mortality that we would expect 



 

 

SeabORD to produce for a much wider set of SPAs and windfarm scenarios than those used in developing 

the emulator. 

The results of the work must be interpreted cautiously, in large part because of the relatively small training 

set of SeabORD runs that we were able to use to build the emulator for each species, so we conclude by 

outlining the key limitations and caveats underpinning the work, and describing the potential for future 

work in this area (including work that is already planned to take place within WP4 of the ECOWINGS 

project). We finally conclude by examining the wider implications of the work. 

2. Methods 

2.1. Selection of species and bird distribution maps 

We focus here upon three species: kittiwake, guillemot and razorbill. SeabORD is also available for a fourth 

species, puffin, but this was not considered here because multi-colony GPS-based maps are not available 

for this species, and initial explorations using distance decay maps suggested that these were not 

plausible for all colonies. 

For each of these species the colony-specific bird density maps used as inputs to SeabORD for each SPA 

are derived by upscaling the maps produced by Wakefield et al. (2017) to the level of SPAs.  

Wakefield et al. (2017) used multi-colony GPS tracking data to estimate general relationships between 

spatial distribution and a range of explanatory variables (relating to environmental conditions and levels 

of competition) for each species and then used the models of these relationships to predict distributions 

for untracked colonies.  

SeabORD is typically applied to SPAs, but the maps of Wakefield et al. (2017) relate to Seabird 2000 

subsites (or, strictly, 1km segments within each subsite, but the aggregation from segments up to 

subsites is straightforward). A method is therefore needed to convert these maps into SPA-based maps. 

We use a dataset within the CEF Data Store (https://cef-librarybook.datalabs.ceh.ac.uk/) that provides a 

simple geographical overlap of Seabird 2000 subsites with SPA polygons to estimate the proportion of 

each Seabird 2000 subsite that lies in each SPA (Data Store dataset #609). The total proportion of birds 

to apportion to each SPA is then calculated to be the sum of the product (e.g., multiplication) of the 

proportion of birds apportioned to each Seabird 2000 subsite and the proportion of that subsite that is 

within the SPA. In the special case that the proportion of subsite in SPA were equal to one for a single 

Seabird 2000 subsite, and to zero for all other subsites, then the proportion of birds apportioned to the 

SPA would therefore be equal to that for the Seabird 2000 subsite that had a proportion of one within the 

SPA. The approach used to derive these overlaps (i.e., to produce dataset #609) is provisional, in the 

absence of an alternative generic way of aligning Seabird 2000 colony definitions with SPA boundaries 

but has been flagged as a dataset that requires feedback from stakeholders and may be revised within 

subsequent iterations of the CEF. Table 2 lists the Seabird 2000 subsites that are calculated within this 

dataset to relate to each of the SPAs under consideration.  

2.2. Selection of SPA-windfarm scenarios 

We extract bird distribution maps all of the SPAs included in the CEF Data Store (except Marine SPAs), 

and extract footprint shapefiles for all of the windfarms for which footprint shapefiles and other 

information are available in the CEF Data Store. For each species at each SPA, we then identify the set of 

windfarm scenarios to consider as follows: 



 

 

• Stage 1. we use the bird distribution map and ORD footprint shapefiles to calculate, for each 

footprint that lies within the foraging range of each SPA, the proportion of the bird distribution 

that lies within the footprint (“pineachord”). 

 

• Stage 2. for every possible combination of windfarms that contains five or less windfarms, we 

then calculate the (a) number of windfarms within the scenario (“nords”) and (b) the total 

proportion of the bird distribution that lies within a footprint (“totalpinords”), which we calculate 

by summing across the values of “pineachord” for the footprints included within the scenario. 

 

• Stage 3. We now retain those scenarios that contain a single windfarm (i.e., for which “nords” is 

equal to one) if “totalpinords” is greater than 0.001, and those scenarios that contain multiple 

windfarms (i.e., for which “nords” is greater than one) if “totalpinords” is greater than 0.02. 

 

• Stage 4. For each number of windfarms in multi-windfarm scenarios (e.g., each value on “nords” 

that is greater than one) we select one of the scenarios from step (3) at random. All scenarios 

with a single windfarm from step 3 (i.e., scenarios for which “nords” is equal to one) are retained. 

 

• Stage 5. We exclude any SPAs for which no multiple windfarm scenarios met the criteria at Stage 

3.  

Considering a maximum of five windfarms at step (2) is necessary for computational reasons but does 

impose an important caveat on how the results of the work can be used, by ruling out the potential to 

apply the results to situations involving larger numbers of impacts, or higher levels of overall baseline 

OWF usage than those captured by the resulting scenarios. The rules at stages (3) and (4) are designed 

to extract a set of single windfarm scenarios that include non-negligible levels of interaction between 

SPAs and footprints, and to extract a relatively small number of multi-windfarm scenarios that involve 

relatively high levels of interaction between SPAs and footprints. The thresholds used are inevitably 

somewhat arbitrary. The reason for treating single-windfarm and multi-windfarm scenarios differently is 

that there are an extremely large number of the latter type of scenario, and that multi-windfarm scenarios 

are computationally more computationally expensive to run through SeabORD than single windfarm 

scenarios. From a practical perspective, the impacts of single windfarms may be of interest even if they 

are relatively small, if they contribute to large in-combination effects, so there is also an application-driven 

rationale for setting different thresholds for consideration of single windfarm and multi-windfarm 

scenarios.  

This selection process resulted in identifying three to four SPAs with a range of sets of offshore 

windfarms for each of the three species (Table 1). 

Table 1. Summary of scenarios considered for wind farm runs of SeabORD for each colony for each 

species. For each species at each colony the number of scenarios that (a) contain a single windfarm, or 

(b) contain multiple windfarms. Total number of scenarios per type (single/multi), colony and species 

are also shown, in grey. The column for the number of scenarios containing multiple windfarms also 

indicates, in brackets, the numbers of windfarms represented by these scenarios. 

 

 

 

 



 

 

Species Colony 

Number of scenarios 

Single 

windfarm 

Multi 

windfarm 

Total 

Kittiwake UK9002271 (Fowlsheugh) 5 4 (2-5) 9 

UK9004171 (Forth Islands) 5 2 (2-5) 6 

UK9004271 (St Abb's Head to Fast Castle) 5 4 (2-5) 8 

UK9006101 (Flamborough and Filey Coast) 6 4 (2-5) 10 

Total 21 14 35 

Guillemot 

 

UK9002271 (Fowlsheugh) 7 4 (2-5) 11 

UK9004171 (Forth Islands) 6 4 (2-5) 10 

UK9004271 (St Abb's Head to Fast Castle) 5 4 (2-5) 9 

Total 18 12 30 

Razorbill UK9002271 (Fowlsheugh) 6 2 (4-5) 8 

UK9004171 (Forth Islands) 6 4 (2-5) 10 

UK9004271 (St Abb's Head to Fast Castle) 5 2 (4-5) 7 

Total 17 8 25 

TOTAL across all species 56 34 90 

 

 

 

 

 

 

 



 

 

Table 2. Alignment of Seabird 2000 subsites with the SPAs considered here, according to the 

provisional CEF Data Store dataset #609 that contains a simple geographical match of the Seabird 

2000 subsite start and end locations to SPA polygons. For each SPA all Seabird 2000 subsites are 

listed for which the line between the start and end location contains any part of the SPA; for such 

subsites the proportion in SPA, according to a simple geographical overlap, is listed. 

SPA Seabird 2000 subsite Prop in 
SPA 

UK9002271 
(Fowlsheugh) 

Catterline Bay 0.167 

Crawton Bay 0.304 

Fowlsheugh 2 1 

Fowlsheugh 3 1 

Fowlsheugh 4 0.833 

Thornyhive Bay 0.402 

Trelong Bay 0.137 

Tremuda/Old Hall Bay 0.431 

Trollochy Cove 1 

UK9004171 (Forth 
Islands) 

Bass Rock 1 

Craigleith 1 

Eyebroughy 1 

Fidra 1 

Inchmickery 1 

North Berwick Coast 1 0.029 

North Berwick Coast 2 0.029 

The Lamb 1 

Whole Island count 1 

UK9004271 (St 
Abb's Head to Fast 
Castle) 

Broadhaven to Moorburn Point 1 

Fast Castle Head to unnamed Cleugh east of Green Stane 0.637 

Lansey Bank to unnamed Cleugh east of Green Stane 0.990 

Moorburn Point to Fast Castle 1 

Redheugh Cottages to Lansey bank 0.167 

St Abb's Head NNR 0.294 

St Abbs to Eyemouth 1 0.059 

UK9006101 
(Flamborough and 
Filey Coast) 

Barlett Nab 1 

Bempton Gannetry 1 

Breil Newk 1 



 

 

Buckton 1 

Cayton Bay 2 0.559 

Dykes End 1 

East Scar 1 

Filey 1 1 

Filey 2 1 

Filey 3 1 

Flamborough 0.853 

Flamborough 1 1 

Flamborough 2 0.343 

Flamborough 3 0.392 

Grandstand 1 

Jubilee Corner 1 

North Cliff 1 

Speeton 1 

Thornwick 1 

Trig Point 1 

Wandale 1 
 

2.3. Generation of SeabORD runs 

The new R version of SeabORD being developed within the CEF project is run for each of the scenarios 

outlined in Section 2.1. Biological parameters within SeabORD for each species are fixed to the values 

used in Searle et al. (2018), and a unform prey map is used in all cases. The underlying functionality of 

the R version of SeabORD is very similar to that for the Matlab version of SeabORD. The R version 

incorporates a revised implementation of inter-colony competition to improve computational efficiency, 

but this does change not alter the underlying assumptions that the model makes regarding inter-colony 

competition (Marine Scotland CEF project report, in preparation). The R version also utilises a different 

grid (with wider spatial extent) and a coarser grid resolution. 

For each colony, for each species, SeabORD requires a bird distribution map and colony size to be 

specified. The prey level parameter also needs to be calibrated for each colony. The bird distribution maps 

are based on scaling the maps of Wakefield et al. (2017) to SPA level, and the colony sizes on scaling 

estimates of abundance for Seabird 2000 subsites up to SPA level in the same way (Marine Scotland CEF 

project report, in preparation). Within SeabORD birds are simulated to fly from the colony to cells on a 

regular grid that are assumed to represent foraging locations. The probability of visiting each grid cell at 

each time step is dependent on the bird distribution map, with birds assumed to have zero probability of 

visiting grid cells whose distance from the colony exceeds the species-specific foraging range used in 

Wakefield et al. (2017). 

SeabORD is run under both baseline and windfarm scenarios for each colony. The baseline scenario 

represented the situation in which no wind farms are present. Windfarm scenario consider impacts of 

wind farms on the flight paths and foraging locations of birds. 



 

 

For each species at each colony, baseline-only runs of SeabORD are initially used to calibrate the range of 

prey levels to use within SeabORD. A regular grid of prey values are initially used, and the results inspected 

by an ecologist with expertise in calibration of SeabORD; if necessary, SeabORD is then run for additional 

prey levels, until the range of prey levels that produce plausible baseline outputs has been identified. The 

calibration is primarily based on looking at baseline mass change and baseline chick survival, but other 

baseline outputs are also examined and may be used in assist in setting the range of plausible values. 

The output from the calibration, for each species at each colony, is the range of prey levels that lead to 

plausible baseline outputs. The prey levels used in running SeabORD for windfarm scenarios are then 

based on taking a regular sequence of twenty values that span this range. 

10% of the population is simulated for calibration runs, to improve computational efficiency, as is standard 

practice when running SeabORD, but 50% (half) of the population was simulated when considering 

windfarm scenarios. 

Following a previous research project (Searle et al. 2020) the displacement rate is assumed to be 60% for 

all species, colonies and scenarios, and the proportion of displaced birds that also experience barrier 

effects was assumed to be 100% in all cases. Note that these rates are not intended to capture current 

advice or may not necessarily be realistic; we use the same rate for all species to aid interpretation of the 

comparisons between species. 

A “border” of 2km (SNCBs, 2022) and a “buffer” of 5km (Searle et al., 2018) were used for all for windfarm 

footprints. This means that birds lying either within the footprint or within 2km of the windfarm footprint 

were assumed to be displaced away from the footprint, and that displaced birds were redistributed into 

the area that lies between 2km and 7km aware from the footprint. Note that the meaning of the term 

“buffer” in the context of SeabORD differs from the usage of this term in the context of collision risk 

modelling or the Displacement Matrix (the “border” for SeabORD is effectively equivalent to the “buffer” 

used in those methods, whilst they do not explicitly consider an equivalent to the “buffer” used in 

SeabORD). 

2.4. Estimating windfarm impacts from SeabORD outputs 

Key SeabORD outputs relate to changes in adult mass loss over the course of the breeding season, to 

chick mortality over the breeding season, and to year-round adult mortality. The final of these is based on 

translating changes in adult mass into annual survival, and thereby annual mortality, using published 

mass-survival relationships. The chick and adult survival rates represent the proportion of individuals 

(chicks and adults, respectively) in the population that are simulated to survive, and the corresponding 

mortality rates represent the proportion of individuals that are simulated to die. Chick mortality occurs 

during the breeding season, and adult mortality may occur during both the breeding and non-breeding 

season, but in practice la largely restricted to the overwinter period.  

The adult mass loss over the course of the breeding season is represented as a proportional change, to 

enhance interpretability and readily enable comparisons between species, so that the proportional adult 

mass loss is equal to (Mean initial adult mass - Mean simulated adult mass at the final timepoint within 

the chick rearing period)/ (Mean initial adult mass). Note that the mean initial adult mass is a species-

level biological input parameter to SeabORD and is assumed to be the same for all colonies. 

SeabORD evaluates the impacts of windfarms by comparing outputs for scenarios that involve windfarms 

against a “baseline” scenario in which there are no windfarms, so that: 

windfarm effect on adult mortality = (Simulated adult mortality rate with windfarm(s) – Simulated adult 

mortality rate under baseline) = (Simulated adult survival rate under baseline – Simulated adult survival 

rate with windfarm(s)) 



 

 

windfarm effect on chick survival = (Simulated chick survival rate with windfarm(s) – Simulated chick 

survival rate under baseline) 

windfarm effect on adult mass change = (Simulated mean proportional adult mass change over the chick 

rearing period with windfarm(s) - Simulated mean proportional adult mass change over the chick rearing 

period under baseline) 

These represent differences between the windfarm(s) and the baseline, so these values will be positive if 

the windfarms lead to an increase in mass loss or adult/chick mortality relative to the baseline (i.e., to a 

decrease in mass change or adult/chick survival relative to the baseline), and negative if they lead to a 

reduction in mass loss or adult/chick mortality (i.e., to an increase in mass change or adult/chick survival) 

relative to the baseline. 

The impacts of windfarms within SeabORD depend on all of the windfarms that are designed to be 

present: SeabORD does not attempt to separately estimate the effect of these windfarms, but rather 

considers their simultaneous cumulative impacts, and automatically accounts for any interactions 

between windfarms (if there are of a form that can be captured by the mechanisms represented within 

SeabORD). 

The “windfarm effect on adult mortality” and “windfarm effect on chick mortality” values defined above 

are population-level values, so relate to all individuals within the population, including those that never 

interact with the windfarm(s) or experience displacement. In WP4 we outline how these outputs can be 

used to derive estimates of “displacement mortality rates”: i.e., mortality rates relevant to the subset of 

birds that experience displacement. 

2.5. Variables used for emulation 

A separate emulator was developed for each species for each of the following three response variables: 

a) windfarm impact on adult mass loss, b) windfarm impact on chick mortality and c) windfarm impact 

on adult mortality. Each emulator attempted to quantify the relationship between the response variable 

and a range of potential explanatory variables. 

These explanatory variables are designed to represent the inputs to SeabORD. The biological parameters 

to SeabORD are held fixed across all runs for each species, and prey maps are assumed to be uniform in 

all cases, so these are not considered here. We instead focus on those inputs that do vary between runs, 

which are of key practical interest in developing models of SeabORD outputs that could be translated to 

new colonies and windfarm scenarios. The inputs to SeabORD that do vary between runs, within each 

species, are (1) prey level, (2) colony size, (3) windfarm footprints, (4) colony location and (5) bird 

distribution map. The prey level can vary between all runs (because multiple calibrated prey levels are 

considered for each scenario), whereas colony size, colony location and bird distribution map vary only 

between colonies, and windfarm footprints only between windfarm scenarios. 

The primary explanatory variable that we consider, which we abbreviate as “ptdisp”, is the proportion of 

individuals that are displaced at each timepoint. Since the spatial locations of individuals are assumed 

within SeabORD to have the same distribution at each time point within the chick rearing period, and are 

assumed to be independent from one timepoint to the next, this quantity can be derived by simply 

multiplying the displacement rate by the total proportion of the colony-specific spatial distribution of birds 

that is contained within any windfarm footprint (or within 2km of the footprint): this is the quantity 

“totalpinords” that we defined in Section 2.2, and have already used in deciding the set of windfarm 

scenarios to consider. Since we assume a displacement rate of 0.6 for all species and scenarios, it would 

effectively to be equivalent to include either “ptdisp” or “totalpinords” as an explanatory variable in the 

emulator, but we use “ptdisp” because the parameter associated with the effect of this variable then has 

a direct interpretation in relation to displacement mortality rates (WP4). 



 

 

We expect “ptdist” (or equivalently “totalpinords”) to be the explanatory variable that is most strongly 

related to the windfarm effects on adult survival, chick survival and adult mass change, because it 

provides a direct measure of the rate at which bird-windfarm interactions will occur within SeabORD. 

All of the other explanatory variables that we consider are designed to try to capture more subtle features 

of SeabORD, that lead displacement mortality to vary in relation to SPA and ORD characteristics in ways 

that are not solely determined by the rate at which displacement is occurring.  

The first additional explanatory variable that we consider is  

• “prey”: prey level in grid cell (grams per km2). 

and the second is 

• “colsize”: colony size (number of birds). 

both of which are direct inputs to SeabORD. The next two explanatory variables that we consider represent 

key characteristics of the windfarm scenario being considered, and are calculated from the footprint 

shapefiles for each windfarm: 

• “nords”: number of wind farms in scenario. 

 

• “totalfparea”: total area of wind farms within the scenario, summed across all windfarm footprints 

(km2). 

The next three explanatory variables represent characteristics of the spatial relationship between the 

colony location and the windfarm footprints: 

• “meandist2spa”: mean distance by sea from windfarm midpoint(s) to colony (km). 

 

• “maxsweptangle”: mean angle ‘swept’ each wind farm in relation to seabird colony. For a single 

wind farm, this is the range of angles within which the bird flying in a straight line away from the 

colony would, at some point, fly across the wind farm footprint. For scenarios with multiple 

windfarms this is calculated by averaging the angle across windfarms. 

 

• “fpalignment”: average wind farm alignment in relation to bird colony. For a single wind farm, this 

metric is calculated as ratio of the radius of a circle determine by the maximum swept angle and 

the mean distance to colony (which can be calculated as (TAN(maxsweptangle/2) x 

meandist2spa) by trigonometry) to the radius of a circle determined by the windfarm area (which 

can be defined as SQRT(totalfparea/𝜋) based on the formula for the area of a circle). For 

scenarios with multiple windfarms this is calculated by averaging the ratio across windfarms.  

The metric “maxsweptangle” represents the extent to which the wind farm “blocks” flight paths away from 

the colony. It is, however, related to wind farm size (since a larger windfarm will, all else be equal, have a 

larger value of “maxsweptangle”). The alignment metric, “fpalignment”, is constructed in order to try to 

construct a metric that quantifies the magnitude of this “blockage”, but is independent of the size of the 

windfarm. Note that the alignment metric, “fpalignment”, is equal to one for a wind farm that is a circle, 

less than one for a wind farm which appears shorter when viewed from the colony than when viewed from 

other angles, and greater than one for a wind farm which appears longer when viewed from the colony 

than when viewed from other angles. Windfarms with values of “fpalignment” greater than one operate 

as a greater barrier to flight paths from the colony than might be expected from the size of the windfarm 

alone, whereas windfarms with values of “fpalignment” less than one operate as less of a barrier to flight 

paths from the colony than might be expected from the size of the windfarm alone. 



 

 

The final explanatory variable represents a characteristic of the interaction between the windfarm 

footprints and the bird distribution map that is not captured by “ptdisp”: 

• “pbeyond”: proportion beyond windfarm: this quantifies the proportion of the bird distribution 

whose distance to colony is lower than the mean distance (by sea) between grid cells within the 

footprint and the colony. This is designed to provide a crude estimate of the proportion of 

individuals that will experience barrier effects that can be rapidly calculated – a more accurate 

calculation of the proportion of individuals experiencing displacement would involve calculating 

the shortest path distance from the SPA to each cell of the grid, which can be relatively 

computationally intensive to calculate. 

The direct inputs to SeabORD (“preylevel” and “colsize”) are natural explanatory variables to include, and 

the windfarm scenario characteristics (“nords” and “totalfparea”) appear obvious variables to represent 

the key characteristics of the windfarms. By contrast, the remaining metrics are all designed to provide 

useful summaries of the interactions between windfarms, colonies and bird distribution maps, but there 

are also many other potential metrics that could have been considered to summarize these interactions 

based on the same inputs. The selection of the above metrics as potential explanatory variables is 

therefore not designed to be comprehensive, but rather to ensure that the variables being considered 

capture all of the windfarm-colony characteristics that are likely to be key to predicting the level of impact 

that SeabORD will simulated. 

All else being equal, we might expect that the average magnitude of windfarm impacts would increase 

with increases in the proportion of inividuals displaced per timepoint (“ptdisp”), which is in turn directly 

related to the total proportion of colony-specific spatial distribution of birds that is contained within a 

windfarm footprint (“totalpinords”). We might also expect positive relationships between impacts and the 

number of windfarms (“nords”), the total area within windfarms (“totalfparea”), the mean swept angle 

(“maxsweptangle”) and because increases in each of these quantities would, all else being equal, lead to 

an increased rate of interactions between bird and windfarms. However, which of these variables captures 

this best is unclear, and each of these characteristics may capture subtly different effects.  

Given the strong central place foraging constraint in the chick rearing period we might also expect impacts 

to reduce with increases in the mean distance to colony (“meandist2spa”). The alignment metric 

(“fpalignment”) is designed to capture the relative importance of barrier effects, given that displacement 

and barrier effects operate differently within SeabORD, by identifying the extent to which the windfarm 

operates as a barrier. The swept angle (“maxsweptangle”) will also capture this, but the advantage of 

“fpalignment” is that, unlike “maxsweptangle”, it standardizes for the size of the windfarm, and so can be 

interpreted more readily. 

Within R, the footprint areas needed for “totalfparea” are calculated using the “st_area” function from the 

“sf” package, the angles needed for “maxsweptangle” can be calculated using the “angle.calc” function 

from the “Morpho” package, and the metrics that rely on spatial matching between footprints and colony 

locations or bird distributions maps (“meandist2spa”, “maxsweptangle”, “totalpinords”) can be calculated 

using the “extract” function from the “raster” package. 

2.6. Emulation modelling 

Emulation involves using a statistical model to describe the relationship between the inputs and outputs 

of a mechanistic model. We construct emulators separately for each of the three response variables 

described above (i.e., each of the key metrics of windfarm impacts produced by SeabORD) and do this 

separately for each species. 

A wide range of models or methods can potentially be used for the purposes of emulation, but we focus 

here upon two approaches that are relatively simple to interpret, and computationally extremely fast to 



 

 

use: multiple regression, and linear mixed models. Within each of these methods we develop emulators 

separately for each response variable. Exploratory analyses suggest that there are no clear benefits in 

using bivariate approaches to emulation in this context, although this merits further exploration.  

Defensible approaches to emulation within this context need to account for the clear hierarchical 

structure of the data – the most obvious aspect of this hierarchical structure is the fact that there are 

twenty SeabORD runs per scenario, with each of these runs having identical inputs for everything apart 

from the level of prey (and even this only varies between runs within the relatively narrow range generated 

by the baseline calibration). These runs are used to represent both uncertainty in the (unknown) prey level 

and inherent stochasticity within the model. The result is that the number of raw SeabORD runs per 

species (600 for guillemot, 700 for kittiwake, 500 razorbill) is always twenty times higher than the number 

of scenarios considered (30 for guillemot, 35 for kittiwake, 25 razorbill). 

Modelling approaches that fail to account for this hierarchical structure risk over-stating the effective 

sample size – none of the key explanatory variables of interest vary between the runs within a scenario, 

for example, so the effective sample size for learning about these effects will effectively be much lower 

than the number of individual SeabORD runs. 

We consider two approaches to constructing emulators in ways that address this issue, and assess the 

sensitivity of the results to the choice of approach. The first approach involves using multiple regression. 

Using multiple regression to model the raw SeabORD outputs is problematic, because these outputs have 

a clear hierarchical structure that cannot readily be captured through a regression model, and this is liable 

to lead the model to over-state the effective sample size, and hence to under-estimate uncertainty (and 

thereby, for example, over-state the significance of explanatory variables). We attempt to avoid this pitfall 

by calculating the mean impact per scenario, and then modelling this mean impact, rather than the 

outcomes of individual SeabORD runs, via multiple regression. The averaging across runs per scenarios 

means that the sample sizes for the multiple regression are small (25 to 35 per species), which is, in turn, 

likely to lead to high levels of uncertainty and relatively low levels of power to detect effects. 

We also investigate a second approach, whereby we apply emulators to the raw SeabORD runs. For these 

emulators we use mixed models, rather than linear regression models, in order to be able to account for 

the hierarchical structure of the data. The mixed models each account for a single source of variation via 

the random effects, “scenario”, with other sources of variation being dealt with via the fixed effects (see 

below). We did initially investigate the construction of mixed models that accounted for other sources of 

variation via random effects, but there were issues of non-convergence that did not appear 

straightforward to resolve, possibly arising from the imbalanced structure of the data in relation to ORDs 

and SPAs, so we have instead tried to capture these sources of variation in other ways (e.g., by considering 

models that include “SPA” as a fixed effect).  

2.6.1. Regression models of mean impact per scenario 

We use the multiple regression analyses of the aggregated data (mean impact per scenario) as our main 

analyses, since model selection and goodness-of-fit evaluation are more straightforward to interpret 

within these models but then compare the final models against equivalent mixed models. 

The “null” model represents the simplest model that we are prepared to consider, and all of the other 

models that we consider generalise this model in different ways. We define the null model in this context 

(which we call “R1”) to be a simple linear regression model of the mean impact per scenario, without 

intercept, in which the explanatory variable is “ptdisp” (the expected proportion of individuals displaced 

per timepoint). 

This model is a linear regression model in which the response variables, which each relate to a population-

level impact, is assumed to be linearly related to the proportion of individuals displaced per timepoint 

(“ptdisp”). This model contains no intercept, so that windfarm impacts are assumed to be exactly equal 



 

 

to zero when there are zero birds within the footprint: this is a fairly plausible assumption in this context 

because the structure of SeabORD guarantees that SeabORD must always, when there is no overlap 

between the bird distribution maps and any windfarm footprint, be no individuals that experience 

displacement, hence no impact of displacement. It is possible for there to be barrier effects in this 

situation, although this is unlikely to occur whenever the bird distribution map is dominated by distance 

to colony effects (as is the case in the Wakefield et al., 2017, maps that are used here to provide the 

spatial inputs to SeabORD).  It is also possible for the omission of an intercept to be problematic as a 

statistical modelling assumption  if the point of intercept involves substantial extrapolation beyond the 

range of the data, but that is not the case here, as the distribution of values of “ptdisp” are heavily skewed 

towards values close to zero (as a result of the actual distribution of windfarms and colonies). The 

intercept is excluded here primarily to aid interpretation, because it allows the parameters of the model 

to be expressed in relation to displacement mortality rates (WP4). 

The null model, R1, is extremely simple: it only contains one parameter (aside from the level of residual 

variation), which represents the slope between the response variable (windfarm impact on adult mortality, 

chick mortality of adult mass loss, depending on the analysis) and the proportion of birds in the footprint. 

In WP4 we will argue that this slope parameter can effectively be regarded as the displacement mortality 

rate, under one particular definition of that rate – in order to distinguish this from the differing definitions 

of this rate used in the Displacement Matrix and Expert Elicitation we will term this a “model-based 

displacement mortality rate”. Model R1 represents an assumption that this “model-based displacement 

mortality rate” (for either adults or chicks, depending on the response variable being considered) is the 

same under all circumstances – in particular, for all SPAs and all windfarm scenarios. It is for this reason 

that we consider this to be our “null” model and compare other models against this. The null model for 

adult mass loss has the same form but obviously does not have an interpretation as a mortality rate. 

Model R1 assumes that the same slope can be assumed for all SPAs and windfarm scenarios, and for all 

combinations of SPA and windfarm scenario, implying the same model-based displacement mortality rate 

in all of these situations. We compare this against alternative models in which the slope between the 

response variable (e.g., SeabORD estimates of population-level wind farm effects) and the level of 

displacement per timestep (“ptdisp”) is allowed to vary in different ways, in order to evaluate the extent to 

which it is plausible to assume a common displacement mortality rate (or equivalent standardised rate of 

adult mass loss) across all situations. All of the models that we consider can be expressed in the form: 

  Response variable = Overall slope parameter * ptdisp * (1 + model for variations in slope) + Noise  

[Equation 1] 

and interest lies in (a) quantifying the absolute value of the overall slope parameter (which translates to 

an overall model-based displacement mortality rate) and (b) understanding variations in this slope. 

The first additional model that we consider, R2, is a regression model that has both linear and quadratic 

effects of “ptdisp”. The null model (R1) is a special case of this model in which the quadratic effect is 

equal to zero. Quadratic models are generally considered in order to examine the evidence of the 

existence of non-linear, rather than linear, effects, and that is also true in this case within the structure of 

the model, which focuses on the response variable. However, our interest is in variations in the slope 

(model-based displacement mortality rate), and, viewed from that perspective, the quadratic model is 

instead testing whether there is evidence for the slope (model-based displacement mortality rate) varying 

with the level of displacement (“ptdisp”). Viewed in terms of Equation 1, model R1 is equivalent to a model 

in which: 

  Model for variations in slope = 0 and model R2 equivalent to a model in which Model for variations 

in slope = Slope of slope * ptdisp 



 

 

Models R3-R10 consider whether the slope varies in relation to the number of windfarms (nords, R3), the 

total area within a footprint (totalfparea, R4), the mean distance from windfarm to SPA (meandist2spa, 

R5), maximum angle swept by a wind farm (maxsweptangle, R6), mean windfarm alignment (fpalignment, 

R7), proportion beyond windfarm (pbeyond, R8), mean prey level (prey, R9) and colony size (colsize, R10). 

In each case, the additional variable is included in the model as an interaction with “ptdisp”. Each of these 

models therefore contains an overall slope in “ptdisp”, and a parameter that represents the interaction 

between “ptdisp” and the additional variable. This is equivalent to assuming that the slope depends on 

the additional variable, so that, in the notation of Equation 1, 

  Model for variations in slope = Slope of slope * additional explanatory variable 

We only consider the additional variables in interaction with “ptdisp” because (a) this allows the model to 

be interpreted in relation to displacement mortality rates, (b) many of the variations are only defined if a 

windfarm is present (so, e.g., cannot even be defined when “ptdisp” is zero), and (c) because the structure 

of SeabORD means that the effects of all of these variables must be zero when “ptdisp” is zero, and means 

that the magnitude of their effect is likely to depend on the level of displacement. 

The final regression model that we consider, R11, assumes a separate slope in “ptdisp” for each SPA 

(effectively equivalent to considering the interaction of “ptdisp” with SPA). 

All of the models that we consider contain between 2 and 4 parameters (the residual standard deviation 

being one of the parameters in each case). We restrict attention only to relatively simple models because 

the small sample sizes mean it is unlikely to be realistic to fit more complex models – we did investigate 

some more complex models at an exploratory stage, but the results appeared to indicate that there were 

difficulties in estimating all of the model parameters, so we restricted attention only to the models listed 

here. 

The models that we have considered can be divided into two types: those which descriptively summarise 

the variation not explained by the slope with “totalpinords”, but cannot provide a basis for predicting the 

variations in this slope that would occur at SPAs or windfarms beyond those for which we have data (i.e., 

SeabORD runs), and those that attempt to explain the variation in this slope in terms of explanatory 

variables that would be known for other SPAs or windfarms, thereby allowing this model to provide 

predictive estimates of displacement mortality. 

All eleven of the models considered can, at least in principle, provide a basis for predicting rates for new 

windfarm scenarios for the SPAs that were used in fitting, although the relatively small number of 

SeabORD runs used to fit the emulators mean that these models, and predictions, should be interpreted 

cautiously.  

The model that assumes a separate slope for SPA (R11) cannot be generalised to SPAs beyond those 

used in the modelling, because it provides no basis for quantifying the rates at SPAs other that those used 

in the model. This means that, if this model is found to perform well relative to other models, that the 

emulator cannot defensibly be applied to SPAs apart from the SPAs used to train it (e.g., included in the 

SeabORD model runs used to develop the emulator). The model that includes “prey” as an explanatory 

variable (R9) can also, in effect, not be extrapolated to SPAs beyond those used in the modelling, because 

we do not know the calibrated prey levels of SeabORD for these colonies (and, indeed, the avoidance of 

needing to calibrate SeabORD separately for each new colony is one of the key motivations for using the 

emulator). The remaining models all do, in principle, allow prediction to SPAs other than those used in 

model fitting, because they describe variations in terms of explanatory variables that are readily available 

for all SPAs and scenarios. However, as the number of runs, and particularly number of SPAs, is too small 

to allow a thorough assessment of the generalizability of the results, predictions should again be treated 

very cautiously. In the case of model R10 (colony size), the small number of SPAs used in the model fitting 

(3 to 4 per species) makes extrapolation particularly difficult.  



 

 

We consider both transferrable (to new SPA) and non-transferrable models in order to evaluate the extent 

to which relationships can be generalized across colonies – if a model that contains “prey” exhibits much 

better fit than a model that does not, for example, then this would suggest that we should be cautious in 

generalising from the model without prey, because there are key sources of variation that it is failing to 

capture. Similarly, the models that contains “SPA” are not generalisable, but can be used to provide 

information on the generalisability of other models: if models containing “SPA” have greater empirical 

performance than models containing explanatory variables that can be used for prediction, this indicates 

that the explanatory variables are not capturing all of the variation between SPA seen in the raw data. 

The models being considered, and their potential for transferability, are summarised in Table 3. 

Table 3. Summary of regression models compared for the purpose of selecting an emulator. The same 

set of models are used for all three response variables (impact on adult mass loss, impact on chick 

mortality, impact on adult mortality) for each of the three species. The final column indicates whether 

the model is potentially transferrable to SPAs other than those whose SeabORD runs have been used 

in fitting the emulators; “yes*” indicates a model that could technically be transferred, but where this 

is not recommend due to the small number of unique values available. 

Model 

Model structure for response variable 

(population-level impact) 

Model for model-based 

displacement mortality 

rate 

Transferrable 

to new 

SPAs? 

R1 𝛽1*ptdisp + Noise 𝛽1  Yes 

R2 𝛽1*ptdisp + 𝛽2 * ptdisp2 + Noise 𝛽1 + 𝛽2 ∗ ptdisp Yes 

R3 𝛽1*ptdisp + 𝛽2 * ptdisp * nords + Noise 𝛽1 + 𝛽2 * nords  

R4 𝛽1*ptdisp + 𝛽2 * ptdisp * totalfparea + Noise 𝛽1 + 𝛽2 * totalfparea Yes 

R5 𝛽1*ptdisp + 𝛽2 * ptdisp * meandist2spa + Noise 𝛽1 + 𝛽2 * meandist2spa Yes 

R6 𝛽1*ptdisp + 𝛽2 * ptdisp * maxsweptangle + 

Noise 

𝛽1 + 𝛽2 * maxsweptangle Yes 

R7 𝛽1*ptdisp + 𝛽2 * ptdisp * fpalignment + Noise 𝛽1 + 𝛽2 * fpalignment Yes 

R8 𝛽1*ptdisp + 𝛽2 * ptdisp * pbeyond + Noise 𝛽1 + 𝛽2 * pbeyond  Yes 

R9 𝛽1*ptdisp + 𝛽2 * ptdisp * prey + Noise 𝛽1+ 𝛽2 * prey No 

R10 𝛽1*ptdisp + 𝛽2 * ptdisp * colsize + Noise 𝛽1 + 𝛽2 * colsize  Yes* 

R11  𝛽SPA*ptdisp + Noise    𝛽SPA No 
 

2.6.2. Model comparison 



 

 

We have considered a range of different possible models in order to investigate the sensitivity of the 

results to the choice of model, and to evaluate the relative importance of the different explanatory 

variables. By considering this range of models we aim to ensure that we have identified the key features 

that are driving explainable variations in the SeabORD model outputs. Consideration of a range of different 

possible models reflects the fact that is essentially an exploratory, rather than confirmatory, analysis, that 

aims to identify the factors that influence the relationship between model inputs and outputs within 

SeabORD and to ensure that no important factors are omitted, rather than to investigate a specific 

hypothesis. It also reflects the fact that the main objective is effectively prediction rather than explanation 

– i.e., to produce an emulator that provides an accurate approximation to SeabORD. We aim to interpret 

the results across models, rather than focusing on a single “best” model, and focus on those results that 

are consistent across different modelling assumptions, and that do not appear unduly influenced by the 

caveats that underpin our analyses. 

We fit each multiple regression model in R using the “glm” function in the “stats” package.  

We extract the R-squared for each model – this quantifies the overall proportion of variance in the 

response variable that is explained by the explanatory variables and gives an indication of the extent to 

which the explanatory variables that we can identified are capturing variations in model output. R-squared 

does not account for model complexity, but provides a general, and readily interpretable, indication as to 

whether the addition of additional complexity into models is leading to practically substantive increases 

in the level of variation explained. R-squared values for models without intercept are calculated (by default, 

within the lm function in R) in relation to the total squared value of the response variable (i.e., in effect, 

using the variance that would be obtained if the mean were zero, rather than using the sample mean). 

In order to select between models, however, we need to use a criterion that does adjust for model 

complexity. We compare the performance of the different models empirically using AICc (the Akaike 

Information Criterion, with small sample size adjustment applied) – AICc is a measure of empirical model 

performance that penalizes model complexity. Lower AICc values indicate better empirical fit, after 

adjusting for complexity. Only the relative values of AICc between different models matter, as the absolute 

value has no useful interpretation: the deltaAICc value is calculated by deducting the minimum AICc value 

(across all models) from each AICc value, so that all AICc models are evaluated relative to the model with 

best fit (whose deltaAICc value is, by definition, equal to zero). Standard rules of thumb are that models 

whose deltaAICc value is less than two have comparable empirical performance to the best model, whilst 

models whose deltaAICc value is greater than ten have very low empirical support relative to the best 

model (Burnham & Anderson, 2002). Rather than attempting to select the best model for each species 

and response variable we instead, to aid interpretability, look for the model that provides the best overall 

empirical performance (as assessed by AICc) when looking across all response variables and species. 

2.6.3. Goodness of fit and cross-validation 

We explore the performance of the models using standard visual model diagnostics.  

We also investigate whether there is any evidence for variation between colonies, by refitting the 

emulation models separately to training data for each colony. Such models could not be used for 

prediction to new colonies, so are rather used to evaluate the potential for variations in effects between 

colonies that might represent failures in the assumptions of the species-wide (i.e., cross colony) 

emulation model. The colony-specific emulation models have the same structure as the cross-colony 

models. 

We use cross-validation to investigate the out-of-sample predictive performance of the models, focusing 

on the regression models of mean impact per scenario. We begin by splitting the data into a training set 

(containing 75% of the model runs) and test set (containing 25% of the model runs) and show the results 

of building an emulator on the former and attempting to predict the values of the response variable in the 



 

 

latter. One potential difficulty with this approach to cross validation, however, is that it ignores the 

hierarchical structure of the data and so may yield over-optimistic assessments of performance. We 

therefore also consider an alternative approach in which we treat 2 of the 3 SPAs as the “training set” and 

fit an emulator to these which we then use to try to predict the response variable for the remaining SPA.  

2.6.4. Linear mixed models 

The regression models are applied to mean impacts per scenario. Since this represents a loss of 

information relative to the raw data, which consist of 10 runs per scenario, we also analyse the raw data 

using linear mixed models and investigate whether the results are similar to those obtained by applying 

regression to the aggregate (i.e., mean) values. Linear mixed models are needed for the analysis of the 

raw data in order to avoid pseudo-replication (e.g., over-stating the effective sample size) by accounting 

for the structure of the data. 

We construct the linear mixed models by assuming a random slope with “scenario” (i.e., unique 

combination of windfarms, SPA and species). This is a “random coefficients” model. We assume, for 

comparability with the regression models, that there is no random intercept in the model. Random 

coefficient models are appropriate, given that we would expect the effect of “ptdisp” to dominate variation 

in the response variables and so need to consider variation in this effect.  In terms of model-based 

displacement mortality rates, these models assume that there is random unexplained variation in the 

displacement mortality rates between scenarios. These random coefficients capture the idea that each 

SPA-windfarm combination may have a separate slope. 

We take the null model (R1) from the regression modelling and the overall best fit model from the 

regression modelling (based on AICc), and re-fit each of these as mixed models. We fit each mixed model 

using the “lmer” function in the “lme4” package.  

Within the initial stages of the work, we also investigated mixed models and regression models that did 

contain intercept terms (for both fixed effects and random coefficients, in the case of the mixed models). 

For the regression models the intercepts were estimated to be close to zero, and for the mixed models 

the estimates of intercept terms either produce estimates of the intercept that were close to zero, or else 

encountered problems in estimation. Since we effectively know that an intercept does not exist, and since 

the “no intercept” models have a clearer biological interpretation in terms of displacement mortality rates, 

we have therefore focused throughout on fitting models without an intercept. We also investigated other 

generalizations of the mixed models considered here - in particular to include a random effect for 

windfarm scenario, and to regard SPA as a random rather than fixed effect, but these ran into a range of 

problems around non-convergence that seem likely to arise from the small sample size and imbalanced 

structure, so we did not pursue these further. 

2.6.5. Prediction 

A key aim of the emulator was the development of a model that could be used to predict displacement 

mortality rates for SPA and windfarm scenarios other than those for which SeabORD has already been 

run. 

Because the emulation models are explicitly formulated in relation to model-based displacement mortality 

rates, prediction from these models is, from a technical perspective, very straightforward. Model R1, for 

example, assumes that the same model-based displacement mortality rate applies in all circumstances, 

and can be estimated by estimating the slope parameter of this model. Within that model, “prediction” is 

therefore trivial – it simply involves assuming that this same rate applies everywhere. Prediction from R11 

is similarly trivial, although in that case the rates, and hence predictions, are SPA-specific. Prediction from 

models R2-R10 is also straightforward, since each of these models can be expressed as a model for the 

displacement mortality rate. 



 

 

Note, however, that although prediction is technically straightforward, prediction beyond the range of 

values used for model fitting involves extrapolation, which relies on very strong assumptions that may not 

be plausible. The emulation models we construct are therefore intended only to be used for prediction 

within the range of values of the explanatory variables used in constructing the emulation – i.e., the 

SeabORD runs outlined in Section 2.3. 

We extract the estimated effects of the explanatory variables on the response variable within each model, 

together with associated standard errors (which provide a measure of uncertainty) and p-values. We use 

the p-values to investigate the strength of evidence for effects (i.e., to indicate the chance that the effect 

could have arisen by chance alone), and the parameter estimates to give an indication of effect sizes (i.e., 

the extent to which the estimated effects are of a magnitude that is of practical importance). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

3. Results 

3.1. SeabORD runs 

The calibrated prey level ranges associated with each colony for each species are shown in Table 4.  

Note that the ranges are typically relatively narrow, and that there is considerable variation in ranges 

between colonies within a species, emphasising the need to calibrate SeabORD separately for each 

colony. 

Table 4. Calibrated range of prey levels used for running SeabORD at each colony. Runs with 

windfarm impacts were run using 20 prey levels spread uniformly across this range: for guillemot at 

Forth Islands, for example, there were 20 levels from 336 to 340 in steps of 0.2015. 

Species Colony Prey range 

Kittiwake UK9002271 (Fowlsheugh) 283-283 

UK9004171 (Forth Islands) 156-158 

UK9004271 (St Abb's Head to Fast Castle) 197-200 

UK9006101 (Flamborough and Filey Coast) 253-256 

Guillemot UK9002271 (Fowlsheugh) 494-510 

UK9004171 (Forth Islands) 336-340 

UK9004271 (St Abb's Head to Fast Castle) 372-382 

Razorbill UK9002271 (Fowlsheugh) 286-302 

UK9004171 (Forth Islands) 298-315 

UK9004271 (St Abb's Head to Fast Castle) 224-233 
 

 

  



 

 

In Figures 1-3 we plot the levels of displacement per timestep (ptdisp) against the simulated SeabORD 

impacts for each of the three impacts (chick mortality, adult mortality, adult mass loss) for each species. 

We do this using both the raw SeabORD runs and using the mean SeabORD impact per scenario. We plot 

impacts (on adult mortality, chick mortality and adult mass loss) against the proportion of birds that 

experience displacement per timestep, and at any point during the chick-rearing period, in Figures 1-3. The 

proportion of birds experiencing displacement per timestep is simply calculated to be the proportion of 

time spent in the footprint (totalpinords) multiplied by the displacement rate. This figure is designed to 

illustrate the extent to which the impacts simulated via SeabORD can be explained by this simple metric. 

There is some apparent relationship with this simple metric in all cases (Figures 1-3), with the relationship 

being strongest for kittiwake (in part because there is the greatest level of variation in this metric for 

kittiwake, as the scenarios for kittiwake include higher values for this metric than the scenarios for 

guillemot and razorbill), but there is also substantial noise (unexplained variation). ,  There is no obvious 

visual evidence of non-linearity  over the range of values considered - we would ultimately expect this to 

a non-linear relationship, at very high levels of displacement, but the assumption of linearity appears 

broadly plausible for the range of displacement levels considered here. However, this may well indicate 

insufficient evidence from the available runs to demonstrate the form of any non-linearity, rather than 

evidence against non-linear effects. There is clear visual evidence for differences in relationships between 

SPAs for kittiwake. 

In general, for all three species, predicted impacts on chick mortality (Figure 1) and adult mortality (Figure 

2) resulted in increases in mortality when the windfarm(s) was present, but there are a substantial 

proportion of runs  for which both chick and adult mortality was predicted to decrease in relation to the 

baseline – SeabORD allows for both positive and negative impacts on chicks and adults within 

simulations, and such positive impacts are often related to stochastic noise around very small or 

negligible impacts from windfarms. Adult mass change was predicted to alter in the presence of 

windfarm(s) across all the SeabORD runs for each species, with adults in general, but not always, losing 

more mass in the presence of windfarm(s) when compared to the baseline (Fig. 3). Some SeabORD runs 

resulted in no apparent average net loss of additional adult mass in the presence of the windfarm(s) for 

guillemot and razorbill, or a net gain, at the population level, but this is to expected, given the relatively 

high levels of inherent variation between runs and the low level of interaction between colony-specific bird 

distribution maps and ORD footprints for many of the single windfarm scenarios. Overall, the relationship 

with mass loss showed less residual variation than the relationships with adult and chick mortality, 

reflecting the additional stochasticity involved in simulating mortality.  

There was considerable variation in simulated impacts across the SeabORD runs, although this was 

substantially lower when considering mean impacts per scenario. Our focus within the emulation work 

that follows will essentially be on (a) trying to estimate the slopes associated with the graphs shown in 

Figure 1-3, and (b) trying to quantify and, where possible, explain, the remaining variation seen within these 

plots in terms of other factors. 

 

  



 

 

Figure 1. Scatterplots of proportion of birds displaced per timestep (ptdisp) against simulated 

SeabORD impacts on chick mortality for each species, with different colours representing 

different SPAs. Left hand plots show raw SeabORD impacts, and right-hand plots show mean 

values per scenario. The dashed black line represents an impact of zero. 

 



 

 

Figure 2. Scatterplots of proportion of birds displaced per timestep (ptdisp) against simulated 

SeabORD impacts on adult mortality for each species, with different colours representing different 

SPAs. Left hand plots show raw SeabORD impacts, and right-hand plots show mean values per 

scenario. The dashed black line represents an impact of zero. 

 



 

 

Figure 3. Scatterplots of proportion of birds displaced per timestep (ptdisp) against simulated 

SeabORD impacts on adult mass loss for each species, with different colours representing 

different SPAs. Left hand plots show raw SeabORD impacts, and right-hand plots show mean 

values per scenario. The dashed black line represents an impact of zero. 

 



 

 

In Tables 5-7 we summarise the mean population-level impacts per scenario for each species, for each of 

the three impact variables. There are substantial variations between scenarios – this is to be expected, 

since the scenarios differ substantially in their levels of displacement. Figures 4-6 show broadly positive 

relationships between levels of displacement (ptdisp) and impacts, but with high levels of noise relative 

to the strength of these relationships. We can see from Table 5 that the largest mean population-level 

impacts seen in the SeabORD outputs represent an increase in the chick mortality rate of 0.69% 

(guillemot), 8.0% (kittiwake) and 0.7% (razorbill).  The corresponding increase in the adult mortality rate 

are 0.1% (guillemot), 0.6% (kittiwake) and 0.1% (razorbill) (Table 6), and the increase in the adult mass 

rates are 0.1% (guillemot), 0.3% (kittiwake) and 0.13% (razorbill) (Table 7). Note that these are percentage 

point increases – e.g., an increase of 5%, relative to a baseline rate of 10%, represents a rate of 10 + 5 = 

15%. The differences between species in the maximum levels of impact seen in the SeabORD outputs 

largely reflects differences in the levels of displacement seen within the scenarios for which SeabORD 

has been run – i.e., in effect, differences in the species in the maximum level of overlap seen between bird 

distributions and footprints, for the footprints that were considered within the screening exercise. 

Table 5. Summary of simulated SeabORD impacts (mean per scenario) on chick mortality for each 

species, pooled across SPA and separated by SPA. Summary statistics shown are the minimum, lower 

quartile (Q1), median, mean, upper quartile (Q3), maximum and standard deviation (SD). 

 

Species SPA Min Q1 Median Mean Q3 Max SD 

GU 

 

All -0.0021 -0.0001 0.0010 0.0015 0.0034 0.0060 0.0021 

UK9002271 -0.0004 0.0003 0.0018 0.0019 0.0034 0.0048 0.0018 

UK9004171 -0.0013 0.0002 0.0024 0.0022 0.0042 0.0060 0.0026 

UK9004271 -0.0021 -0.0004 0.0000 0.0001 0.0005 0.0021 0.0013 

KI All -0.0010 0.0010 0.0067 0.0183 0.0349 0.0795 0.0237 

UK9002271 -0.0010 0.0016 0.0045 0.0039 0.0063 0.0067 0.0028 

UK9004171 -0.0004 0.0039 0.0089 0.0157 0.0185 0.0565 0.0196 

UK9004271 -0.0001 0.0069 0.0491 0.0350 0.0561 0.0795 0.0307 

UK9006101 -0.0006 0.0008 0.0059 0.0181 0.0412 0.0513 0.0230 

RA All -0.0048 -0.0006 0.0005 0.0012 0.0031 0.0066 0.0029 

UK9002271 -0.0025 -0.0015 -0.0006 -0.0004 0.0007 0.0021 0.0016 

UK9004171 -0.0006 0.0013 0.0025 0.0029 0.0050 0.0066 0.0025 

UK9004271 -0.0048 -0.0004 0.0000 0.0007 0.0025 0.0052 0.0034 

 



 

 

Table 6. Summary of simulated SeabORD impacts (mean per scenario) on adult mortality for each 

species, pooled across SPA and separated by SPA. Summary statistics shown are the minimum, lower 

quartile (Q1), median, mean, upper quartile (Q3), maximum and standard deviation (SD). 

Species SPA Min Q1 Median Mean Q3 Max SD 

GU All -0.0006 -0.0004 0.0000 0.0002 0.0007 0.0014 0.0006 

UK9002271 -0.0002 0.0000 0.0005 0.0004 0.0007 0.0011 0.0004 

UK9004171 -0.0004 -0.0002 0.0002 0.0004 0.0009 0.0014 0.0007 

UK9004271 -0.0006 -0.0005 -0.0005 -0.0003 -0.0003 0.0008 0.0004 

KI All -0.0008 0.0000 0.0005 0.0013 0.0021 0.0055 0.0018 

UK9002271 -0.0008 -0.0002 0.0000 0.0001 0.0004 0.0012 0.0006 

UK9004171 -0.0004 0.0000 0.0009 0.0013 0.0018 0.0047 0.0018 

UK9004271 0.0000 0.0003 0.0023 0.0023 0.0036 0.0055 0.0021 

UK9006101 -0.0003 0.0000 0.0005 0.0015 0.0033 0.0046 0.0020 

RA All -0.0007 -0.0002 0.0006 0.0007 0.0014 0.0027 0.0010 

UK9002271 -0.0005 -0.0003 0.0005 0.0003 0.0007 0.0010 0.0006 

UK9004171 -0.0005 0.0005 0.0010 0.0010 0.0018 0.0022 0.0009 

UK9004271 -0.0007 -0.0003 0.0004 0.0007 0.0016 0.0027 0.0013 

 

  



 

 

Table 7. Summary of simulated SeabORD impacts (mean per scenario) on adult mass loss for each 

species, pooled across SPA and separated by SPA. Summary statistics shown are the minimum, lower 

quartile (Q1), median, mean, upper quartile (Q3), maximum and standard deviation (SD). 

 

Species SPA Min Q1 Median Mean Q3 Max SD 

GU All -0.00024 -0.00008 0.00007 0.00020 0.00045 0.00091 0.00033 

UK9002271 -0.00011 0.00007 0.00038 0.00032 0.00050 0.00084 0.00030 

UK9004171 -0.00020 -0.00007 0.00026 0.00028 0.00059 0.00091 0.00039 

UK9004271 -0.00024 -0.00008 -0.00008 -0.00005 -0.00004 0.00026 0.00013 

KI All -0.00017 0.00004 0.00020 0.00073 0.00141 0.00304 0.00099 

UK9002271 0.00002 0.00005 0.00018 0.00013 0.00020 0.00022 0.00008 

UK9004171 -0.00017 0.00001 0.00017 0.00052 0.00079 0.00204 0.00078 

UK9004271 0.00004 0.00027 0.00187 0.00138 0.00227 0.00304 0.00119 

UK9006101 -0.00006 0.00001 0.00027 0.00082 0.00192 0.00240 0.00110 

RA All -0.00008 0.00003 0.00018 0.00023 0.00031 0.00085 0.00024 

UK9002271 -0.00003 0.00003 0.00015 0.00011 0.00019 0.00022 0.00010 

UK9004171 -0.00001 0.00008 0.00025 0.00033 0.00050 0.00085 0.00030 

UK9004271 -0.00008 0.00005 0.00022 0.00022 0.00035 0.00058 0.00024 

 

In Table 8 we investigate the correlations between the potential explanatory variables within the SeabORD 

runs used to develop the emulator. We can see that there are two blocks of variables that are highly 

(positively) correlated with each other - 

a) a block of three variables that aim to quantify the overall expected level of interaction between 

the population and windfarm: ptdisp, nords and totalfparea; and 

b) a block of three variables that aim to calculate the relative importance of barrier effects: 

maxsweptangle, fpalignment, pbeyond 

There are three variables (meandist2spa, colsize) that are contained in neither of these blocks. 



 

 

We note that the relatively high levels of correlation between other pairs of variables, and relatively small 

sample sizes, mean the results should be interpreted cautiously, because it is likely to be difficult to 

disentangle the effects of different explanatory variables. The emulation models treat ptdisp as the 

primary variable of interest in each analysis and only consider the effects of other variables insofar as 

they modify the effects of ptdisp (e.g., via the inclusion of interactions between these variables and 

ptdisp), because this reflects the structure of SeabORD, and this approach helps in partitioning out the 

effects of different variables.  

Table 8. Correlations between potential explanatory variables within the species-SPA-windfarm 

scenarios for which SeabORD has been run. For “prey” the mean prey level per scenarios is used. 

Correlations greater than 0.8 (of either sign) are shown in dark grey, correlations between 0.6 and 0.8 (of 

either sign) in light grey. 
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Ptdisp 1.00 0.73 0.65 0.02 0.17 0.10 0.18 -0.16 0.05 

Nords 0.73 1.00 0.78 -0.01 0.03 0.03 0.03 0.00 0.00 

Totalfparea 0.65 0.78 1.00 0.42 0.13 0.10 0.07 -0.15 0.26 

meandist2spa 0.02 -0.01 0.42 1.00 -0.28 -0.16 -0.39 -0.24 0.56 

maxsweptangle 0.17 0.03 0.13 -0.28 1.00 0.72 0.92 -0.04 -0.20 

fpalignment 0.10 0.03 0.10 -0.16 0.72 1.00 0.52 -0.03 -0.11 

Pbeyond 0.18 0.03 0.07 -0.39 0.92 0.52 1.00 -0.04 -0.26 

Prey -0.16 0.00 -0.15 -0.24 -0.04 -0.03 -0.04 1.00 0.29 

colsize 0.05 0.00 0.26 0.56 -0.20 -0.11 -0.26 0.29 1.00 
 

3.2. Emulation model selection 

Table 9 summarises the performance of each of the potential models considered for each of the three 

response variables for each of the three species, in terms of the percentage of variance explained. It can 

be seen that the percentage of variation explained is moderate (over 39.7%) for all models (except models 

of adult mortality for guillemot), even the null model (R1), reflecting the positive relationship between 

“ptdisp” and each of the three response variables for all species, but that a large proportion of variance 

remains unexplained. The most complicated model considered, R11, has higher fit than the simpler 

models, with values of over 46.6% for all response variables and species, but it is to be expected that the 

model complex models would have the highest R-squared value, since R-squared does not adjust for 

model complexity. 

Note that Table 9 relates to variation in mean impacts per scenario. To put this in context, we also 

considered the percentage of variance in raw SeabORD outputs that can be explained by differences 

between scenarios (by considering a one-way ANOVA with “scenario”): 



 

 

• Chick mortality: Guillemot = 43.8%, Kittiwake = 96.2%, Razorbill = 7.3% 

• Adult mortality: Guillemot = 17.5%, Kittiwake = 46.2%, Razorbill = 6.3% 

• Adult mass loss: Guillemot: 96.5%, Kittiwake = 98.6%, Razorbill = 48.1% 

It can be seen that run-to-run variation within each scenario (which arises from a mixture of inherent 

natural variability and uncertainty in the total prey level parameter) is higher for mortality than for adult 

mass loss, and much higher for razorbill than for guillemot and kittiwake (probably, at least in part, due to 

the colony sizes being lower for razorbill, which will lead, all else being equal, to greater natural variability 

in population-level characteristics). These results indicate that the R-squared values in Table 9 may be 

substantially over-optimistic, in terms of the total proportion of variation between individual SeabORD runs 

that is described by the OWF and SPA characteristics. However, we are essentially interested in this WP 

in investigating variations in mean SeabORD response per scenario, so in this sense the R-squared values 

in Table 9 are potentially more directly relevant that values based upon the variance of the raw SeabORD 

outputs. 

Percentage of variation explained (“R-squared”) is a measure of within-sample performance, so will not 

capture any loss of performance that arises from generalising the model to scenarios other than those 

used to fit the model (we try to capture this in subsequent analyses) and therefore tends towards an over-

optimistic assessment of performance. It also imposes no penalty for model complexity, so will never 

assign lower performance when the complexity of a model is increased (e.g., by inclusion of additional 

parameters). It is nonetheless a widely used and interpretable metric, and it provides a useful initial 

assessment of absolute performance, particularly in the context where we are interested in understanding 

sources of variation, but we use a different metric, the Akaike Information Criterion with small sample size 

correction (AICc) to select between the empirical performance of models. Unlike R-squared, AICc does 

include a penalty for model complexity, so aims to find the optimal trade-off between fit to the data and 

model complexity. Low values indicate better fit, and, as it is only useful as a relative, rather than absolute, 

measure of fit, deltaAICc values are created by deducting (for each species and response variable) the 

lowest AICc value from all values. The “best” model has a deltaAICc value of zero by definition. Models 

with a deltaAICc of less than 2 are typically regarded as having comparable performance to the best 

model, whilst those with a deltaAICc of more than 10 are typically regarded as having very low empirical 

performance relative to the best model.  

Table 10 shows the AICc values for each response variable and each species. In general, there are multiple 

models with reasonable levels of empirical support for each impact metric and species, indicating that 

the data (SeabORD runs, in this context) are inconclusive regarding the best model, and the best 

performing model (that with zero deltaAICc value) varies between both metrics and species. In all cases, 

the best performing model includes some form of variation (either between SPAs or in relation to SPA-

windfarm metrics), but the form of this variation – i.e., the best supported explanatory variable – varies 

between species and impact measures. The model with consistently reasonable support (e.g., the 

maximum number of species and impact measures with deltaAICc less than 10) is – the model that allows 

separate trends per SPA (model R11). 

Since there are only three or four SPAs per species it is difficult to disentangle SPA-windfarm interaction 

variables (e.g., distance to windfarm) from the effects of other differences between SPAs. 

The reasons for differences in the effects of “ptdisp” between SPAs and windfarms are likely to be 

complex. The key point to note is that the explanatory variables that we considered do not entirely capture 

the characteristics of the SeabORD inputs (or, at least, those inputs that vary between runs) – they are 



 

 

only partial summaries of the inputs (since the full set of inputs would be very high dimensional). This 

creates a possibility that the parameters of the emulator could need to be different for different colonies.  

 

Table 9. R-squared values (expressed as a percentage of variation explained) associated with each of 

the multiple regression models that were considered for the mean value of each response variable under 

each scenario for each species. “p” denotes the number of parameters in each model. Models are 

expressed in the notation used in R, whereby “+” represent variables that are considered additively and 

“:” denotes interactions between variables. All models exclude an intercept, and R-squared values are 

therefore regarded with respect to squared variation in the response variable. All explanatory variables 

except “ptdisp” are centered and scaled.  Models in standard font denote models that can be used to 

predict for new SPAs, models in italics denote models that cannot (because they require information 

that would not be available for an SPA at which SeabORD has not yet been run). 

 

 

 

 

 

 

 

Table 10. Delta-AICc values associated with each of the multiple regression models that were 

considered for the mean value of each response variable under each scenario for each species. Values 

shown in dark grey are those with a deltaAICc value of less than 2 (typically regarded as comparable 

empirical support to the best model) and values shown in light grey have a deltaAICc  of between 2 and 

Model structure p 

Impact Chick 
Mortality 

Impact Adult 
Mortality 

Impact Mass Loss 

GU KI RA GU KI RA GU KI RA 

[R1] ptdisp 2 54.6 76.8 49.4 21.0 65.9 39.7 46.1 70.5 83.7 

[R2] ptdisp + ptdisp2 3 56.1 77.6 55.8 22.5 66.4 41.5 46.1 70.9 84.4 

[R3] ptdisp + ptdisp:nords 3 59.6 77.2 49.5 21.2 66.1 43.3 48.8 71.2 83.7 

[R4] ptdisp + ptdisp:totalfparea 3 65.4 77.9 49.9 32.8 66.6 41.9 60.4 71.3 83.7 

[R5] ptdisp + ptdisp:meandist2spa 3 74.4 77.8 50.6 45.4 66.5 43.0 70.6 70.8 84.1 

[R6] ptdisp + ptdisp:maxsweptangle 3 58.3 79.8 63.8 21.3 67.6 51.4 47.2 72.7 86.3 

[R7] ptdisp + ptdisp:fpalignment 3 63.7 79.2 68.6 28.3 66.8 49.3 52.1 72.5 91.4 

[R8] ptdisp + ptdisp:pbeyond 3 58.8 79.9 60.6 21.6 68.1 47.9 47.7 72.7 84.7 

[R9] ptdisp + ptdisp:prey 3 54.9 79.1 49.6 22.7 68.6 39.8 46.9 71.7 83.7 

[R10] ptdisp + ptdisp:colsize 3 58.0 77.7 52.3 45.1 66.3 42.5 60.0 70.7 86.8 

[R11] ptdisp:SPA 4 67.1 80.4 64.8 59.6 69.9 46.6 69.2 74.0 92.1 



 

 

10 (indicating some empirical support). “p” denotes the number of parameters in each model. Models 

are expressed in the notation used in R, whereby “+” represent variables that are considered additively 

and “:” denotes interactions between variables. All models exclude an intercept. All explanatory 

variables except “ptdisp” are centered and scaled.  Models in standard font denote models that can be 

used to predict for new SPAs, models in italics denote models that cannot (because they require 

information that would not be available for an SPA at which SeabORD has not yet been run). 

 

Model structure p 

Impact Chick Mortality Impact Adult Mortality Impact Mass Loss 

GU KI RA GU KI RA GU KI RA 

[R1] ptdisp 2 14.7 2.6 9.3 14.9 0.4 2.8 15.7 0.3 13.5 

[R2] ptdisp + ptdisp2 3 16.2 3.8 8.5 16.9 2.3 4.6 18.2 2.2 15.0 

[R3] ptdisp + ptdisp:nords 3 13.7 4.4 11.9 17.3 2.6 3.9 16.7 1.9 16.1 

[R4] ptdisp + ptdisp:totalfparea 3 9.1 3.3 11.7 12.6 2.1 4.5 8.9 1.7 16.0 

[R5] ptdisp + ptdisp:meandist2spa 3 0.0 3.6 11.3 6.4 2.3 4.0 0.0 2.3 15.4 

[R6] ptdisp + ptdisp:maxsweptangle 3 14.7 0.3 3.5 17.3 1.1 0.0 17.6 0.0 11.7 

[R7] ptdisp + ptdisp:fpalignment 3 10.5 1.3 0.0 14.5 2.0 1.0 14.7 0.2 0.0 

[R8] ptdisp + ptdisp:pbeyond 3 14.3 0.0 5.6 17.2 0.5 1.7 17.3 0.0 14.5 

[R9] ptdisp + ptdisp:prey 3 17.0 1.4 11.8 16.8 0.0 5.4 17.8 1.3 16.0 

[R10] ptdisp + ptdisp:colsize 3 14.9 3.7 10.4 6.5 2.5 4.2 9.3 2.5 10.8 

[R11] ptdisp:SPA 4 10.2 4.5 5.7 0.0 3.8 5.2 4.1 3.5 0.8 
 

3.3. Emulation predictions for other colonies and scenarios 

In Figures 4-6 we show the predicted population-level impacts on chick mortality (Fig 4), adult mortality 

(Fig 5) and adult mass loss (Fig 6) associated with the “null” model (R1) and the best overall model 

according to AICc (R11). Both of these models assume a linear relationship between each impact variable 

and the level of displacement, “ptdisp”, so predictions are straightforward to generate these are simply 

equal to the estimated slope parameter (either overall [R1] or SPA-specific [R11]) multiplied by the value 

of “ptdisp”. The standard error on these predictions can be calculated in the same way (multiplying by 

“ptdisp”).  

The value of “ptdisp” can readily be calculated for any windfarm scenario and population of interest, by 

(a) calculating the proportion of the bird distribution map that is within any footprint or within 2km of any 

footprint (a standard GIS calculation) and (b) multiplying this by the displacement susceptibility rate (often 

just called the “displacement rate”).  

We see from Figures 4-6 we see some visual evidence of relationships between the level of the 

displacement and the mean SeabORD results per scenario, although there is considerable noise, and, for 

guillemot and razorbill, the noise dominates the fitted relationships. The results for kittiwake show 

substantial variations in relationships between SPAs, and, for Flamborough and Filey, show high levels of 

variation within the SPA.   



 

 

There is no obvious visual evidence for nonlinearity, but this is unsurprising given the high levels of noise, 

relative to the strength of the relationships, and does not mean that non-linear effects are not present. We 

would ultimately expect the assumption of linearity will become implausible once levels of displacement 

become high, so the linear relationships estimated here should be interpreted with caution. 

Given the empirical support for SPA-specific relationships, and the relatively small number of scenarios 

per SPA, the predicted relationships should be treated with a very high degree of caution, especially for 

the model (R1) that assumes a common relationship in all circumstances. Emulator R1 can in principle 

be used to produce predictions for new SPAs and new windfarm scenarios, and emulator R11 for new 

scenarios within each SPA, but the number of SeabORD runs used to develop these emulators, combined 

with the high levels of noise (unexplained variation) are currently insufficient for it to be advisable to 

produce predictions in this way.  

 

 

 

 

  



 

 

Figure 4. Scatterplots of proportion of birds displaced per timestep (ptdisp) against simulated 

SeabORD impacts on chick mortality for each species, with different colours representing 

different SPAs, with fitted emulation models shown. Left hand plots show raw SeabORD impacts 

(points) together with predicted values from the pooled mixed model M1 (thick lines) and SPA-

specific mixed model M11 (dotted thick lines). Right hand plots show mean values per scenario 

with predicted values from the pooled regression model R1 (thick lines) and SPA-specific 

regression model R11 (dotted thick lines). The thick dashed black line represents an impact of 

zero. 

. 

 



 

 

Figure 5 Scatterplots of proportion of birds displaced per timestep (ptdisp) against simulated 

SeabORD impacts on adult mortality for each species, with different colours representing 

different SPAs, with fitted emulation models shown. Left hand plots show raw SeabORD impacts 

(points) together with predicted values from the pooled mixed model M1 (thick lines) and SPA-

specific mixed model M11 (dotted thick lines). Right hand plots show mean values per scenario 

with predicted values from the pooled regression model R1 (thick lines) and SPA-specific 

regression model R11 (dotted thick lines). The thick dashed black line represents an impact of 

zero. 

 



 

 

Figure 6. Scatterplots of proportion of birds displaced per timestep (ptdisp) against simulated 

SeabORD impacts on adult mass loss for each species, with different colours representing 

different SPAs, with fitted emulation models shown. Left hand plots show raw SeabORD impacts 

(points) together with predicted values from the pooled mixed model M1 (thick lines) and SPA-

specific mixed model M11 (dotted thick lines). Right hand plots show mean values per scenario 

with predicted values from the pooled regression model R1 (thick lines) and SPA-specific 

regression model R11 (dotted thick lines). The thick dashed black line represents impact of zero. 

 

 



 

 

3.4. Emulator goodness of fit and cross validation 

We examined goodness of fit of the emulator, and explore the potential consequences of lack of fit, using 

a range of different approaches. 

Firstly, we use standard visual diagnostic tools for statistical models to try to detect empirical properties 

of the data that may be inconsistent with model assumptions, focusing on the models containing all 

explanatory variables. A common problem with all emulation models was that the QQ-plots (a standard 

diagnostic tool for examining the goodness of fit relative to the assumed distribution for the response 

variable, not shown) were quite right-skewed, although this was less pronounced for mass change than 

for adult and chick survival. A slight right skew was also seen in histograms of the response variables 

(not shown). Various approaches were investigated in order to try to address this issue. Since values of 

the response variable can take both negative and positive values (in all cases) many standard approaches 

to transformation (log, square root, Box-Cox) cannot be applied directly to the “raw data” (i.e., in this 

context, the SeabORD model outputs). Response variable values were shifted by max(response) to be 

strictly positive, and log, square root and Box-Cox transformations were then applied using Gaussian 

GLMs with appropriate link functions. A Gamma GLM was also investigated as a potential alternative. 

None of these potential alternatives led to any substantive improvements to the Q-Q plots however (which 

remained right-skewed, or only showed a very slight improvement), and the impact on the percentage of 

variance explained was negligible. A cube root transformation of the response variables leads to rather 

greater improvements to the QQ plots, but since the improvements to goodness-of-fit were not 

substantial, we present other results in relation to the models of untransformed response variables, given 

that these are more readily interpretable.  

Our earlier summaries of model performance of model performance were based on R-squared values, but 

we noted that these were within-sample (i.e., not predictive) assessments of performance. We therefore 

also use an alternative, cross-validation, approach that involves fitting models to a subset of the data, and 

then assessing performance against the data that was not included in the subset used for fitting. Because 

the “test data” are not used to fit the model, this avoids the problem of over-fitting (which will frequently 

be an issue when, for example, only R-squared is considered).  

Within this context, we focus on two possible ways of performing the cross validation: a) we fit the model 

to 2 of the 3 SPAs, and then test using the remaining SPA, and b) fitting the model to75% of the data 

(randomly selected) and then testing on the remaining 25% (Figure 4). We focus on the null model, 

because this model is of importance in relation to displacement mortality rates (WP4) and because the 

best model according to AICc cannot meaningfully be examined by cross-validation, given the low 

numbers of observations per SPA. 

The results (Figures 7-9) show some positive relationship between observed and predicted values in all 

cases, but with very high levels of noise around this relationship, indicating relatively poor performance 

of the models when used to predict data points that have been omitted from model fitting. There are no 

clear differences between species or impact metrics. Performance is generally worse when cross-

validating by SPA than by scenario, reflecting the apparent unexplained differences in impacts between 

SPAs. Overall, the cross-validation results suggest that the R-squared values obtained above may give an 

over-optimistic sense of model performance, with the ability of the models to predict for new windfarm 

scenarios or SPAs being relatively poor.  

 

  



 

 

Figure 7. Results of cross validating the pooled regression model R1 of mean SeabORD impacts 

of chick mortality per scenario, for each species. Left hand plots involve removing each SPA and 

then fitting the model using the other two SPAs and using this to predict the response for this 

SPA, for each of the SPAs. Right hand plots involve randomly removing 25% of the scenarios and 

then fitting the model using the remaining 75% and using this to predict the response for the 

omitted 25%, for each of the three SPAs. Colours are used to distinguish between SPAs: colour 

scheme is as in Figure 6. 

to 

 



 

 

Figure 8 Results of cross validating the pooled regression model R1 of mean SeabORD impacts of 

adult mortality per scenario, for each species. Left hand plots involve removing each SPA and then 

fitting the model using the other two SPAs and using this to predict the response for this SPA, for 

each of the SPAs. Right hand plots involve randomly removing 25% of the scenarios and then 

fitting the model using the remaining 75% and using this to predict the response for the omitted 

25%, for each of the three SPAs. Colours are used to distinguish between SPAs: colour scheme is 

as in Figure 6. 

 

 

 



 

 

Figure 9. Results of cross validating the pooled regression model R1 of mean SeabORD impacts of 

adult mass loss per scenario, for each species. Left hand plots involve removing each SPA and 

then fitting the model using the other two SPAs and using this to predict the response for this SPA, 

for each of the SPAs. Right hand plots involve randomly removing 25% of the scenarios and then 

fitting the model using the remaining 75% and using this to predict the response for the omitted 

25%, for each of the three SPAs. Colours are used to distinguish between SPAs: colour scheme is 

as in Figure 6. 

 



 

 

4. Discussion 

4.1. Key findings 

The results need to be interpreted very cautiously, because they are based on a relatively small training 

set of SeabORD runs (and, in particular, a relatively small number of SPAs), and because of the high levels 

of noise (inter-run and inter-scenario variation) relative to the strength of the estimated relationships, but 

the key findings of the modelling were that: 

a. The mean simulated impacts SeabORD of windfarm scenarios on adult mass loss, adult mortality 

and chick mortality show evidence of a positive relationship with the expected proportion of bird 

displaced per timepoint (“ptdisp”), which can be derived by multiplying the displacement 

susceptibility rate (often called “displacement rate”) by the proportion of the bird distribution that 

lies within a footprint or within 2km of a footprint 

b. Emulators have been constructed for each of the three key SeabORD outputs (impact on adult 

mass loss, impact on chick mortality, impact on adult mortality) for each of the three species 

(guillemot, kittiwake and razorbill) 

c. A number of potential different emulation models have been considered, including a model that 

allows a common linear relationship with “ptdisp” in all circumstances, models that description 

variations in the linear relationship in relation to explanatory variables, models that assume a non-

linear rather linear relationship, and models that assume separate relationships for each SPA. The 

results of model comparison show a lot of variation between both species and metrics, but a lack 

of consistency in the evidence as to which factors explain this variation. 

We investigated a range of different emulation models, but these overall qualitative findings remained 

consistent across all of the models considered. The high levels of uncertainty regarding the models, and 

the high levels of unexplained variation, suggest that the results of the emulation cannot currently be used 

to predict displacement mortality for new SPA or windfarm scenarios. 

4.2. Caveats and limitations 

There are a number of key caveats and limitations to be aware of when interpreting the results. 

Many of the key caveats and limitations around the current work arise from the fact that SeabORD remains 

a highly computationally intensive model to use, and continues to require manual calibration of prey levels 

for each population (colony and species) for which it will be run – exploratory work within the Scottish 

Government Marine Directorate CEF project to try to automate the calibration process have suggested 

that this is challenging, and not easily achieved, and although this is being explored more fully within the 

OWEC PrePARED project, such work in ongoing so the need for manual calibration currently remains. The 

work within this project has also occurred in parallel with the development of SeabORD-R within the 

Marine Scotland CEF project, which has presented logistical challenges. These constraints have meant 

that within this project it has only been feasible to run SeabORD for a relatively small number of colonies 

per species (3-4), scenarios per colony (between 6 and 11, with a mean of 9) and prey levels per scenario 

when considering wind farm impacts (20). These runs still represent a substantial amount of overall 

computational effort, but the computational constraints mean that the results need to be treated with 

caution and interpreted carefully. In particular, the small number of colonies per species means that it has 

not been possible to thoroughly evaluate the extent to which model-based estimates of displacement 



 

 

mortality rates can generalise between colonies, in terms of the properties of SeabORD itself. The 

computational constraints have also made it difficult to evaluate the assumptions that underpin the 

emulator, and thereby the extent to which the emulation results can generalise to colonies and scenarios 

other than those for which SeabORD has been run. 

The results are dependent upon the assumptions that underpin SeabORD, and upon the values of the 

species-level biological parameters used within the model (which are taken from Searle et al., 2018, 

Appendix B). Note that the emulation is designed to be an approximation to SeabORD, so all of the 

assumptions within SeabORD effectively also become assumptions within the emulator. 

We have assumed that bird distributions are derived from the maps of Wakefield et al. (2017), scaled up 

to SPA level. Fairly strong assumptions are required in order to analyse GPS tracking data in such a way 

as to produce a model that can predict spatial distributions for all colonies (Wakefield et al., 2017), and, 

for colonies with extensive GPS tracking data, it is likely to be possible to produce more defensible and 

realistic maps using a colony-specific analysis. A key specific caveat around the use of the Wakefield et 

al. (2017) maps within this context is the fact that the maps incorporate all behaviours, but are assumed 

when used here as inputs to SeabORD to relate to foraging locations, which may lead, through the 

inclusion of locations relating to transit, to a bias towards foraging being simulated to occur closer to the 

colony than would be the case if foraging-only maps were used. However, the maps of Wakefield et al. 

(2017) currently provide a feasible approach for colonies that lack GPS tracking data, and avoid the need 

for colony-specific analyses, so are suited to broad-scale multi-colony analyses such as being conducted 

here. The approach used to relate the Seabird 2000 subsites used in Wakefield et al. (2017) to the SPAs 

for which we run SeabORD (i.e., to produce dataset #609 in the CEF Data Store) is provisional, in the 

absence of an alternative generic way of aligning Seabird 2000 colony definitions with SPA boundaries 

but has been flagged as a dataset that requires feedback from stakeholders and may be revised within 

subsequent iterations of the CEF. 

The results assume that the SeabORD runs within the scenarios considered for each species span a range 

of conditions that can be used to estimate general properties of the SeabORD model. For guillemot and 

razorbill, in particular, this assumption may be problematic, given that the even the highest levels of 

displacement captured by the scenarios are relatively modest. This occurs even though the process of 

selecting scenarios was deliberately designed to capture those colony-windfarm combinations with the 

highest levels of overlap. Possible explanations are likely to relate to a combination of (a) lower spatial 

overlap with windfarms for these species, (b) characteristics of the spatial distribution maps in Wakefield 

et al. (2017) and (c) the scenarios only considering those windfarms currently included in the CEF Data 

Store.  

We have assumed here that prey is uniformly distributed across space within the foraging range of each 

colony due to a lack of availability for prey maps from relevant geographical regions. Work within the 

OWEC PrePARED project will improve the representation of prey within SeabORD. 

The performance of the emulator that we have constructed for SeabORD depends heavily upon the choice 

of potential explanatory variables to try to capture the characteristics of the model inputs. The key inputs 

to SeabORD (aside from the biological parameters, which have been held fixed across all runs here, and 

the prey map, which has been assumed here to be uniform) are the prey level parameter, the colony size, 

the bird distribution maps, and the footprints. We include the first two of these as potential explanatory 

variables, and construct seven additional variables that relate to the characteristics of the footprints in 

relation to the colony and bird distribution map. Some of these variables are defined in relatively ad hoc 

ways, however, and there are clearly many other possible additional metrics that could be constructed. 



 

 

One potentially very useful metric would be the proportion of individuals per timestep that experience 

barrier effects, with this is a key mechanism of impact within SeabORD – this was not considered here 

because we focused on metrics that could readily be calculated for any scenario, and this metric is 

moderately computationally intensive to calculate, but it would be useful to investigate this further. 

We have focused here upon impacts of OWF and SPA characteristics in relation to the level of 

displacement (“ptdisp”), but it is possible that the effects of these characteristics are also non-additive in 

other ways, and that interactions between these characteristics may therefore exist. It is also possible 

that interactions between characteristics and “SPA” may exist, if the impacts of characteristics vary 

between SPAs in ways that cannot be captured by simple additive and linear relationships. 

We have focused here on relatively simple statistical methods for emulation, multiple regression and 

mixed modelling. This has some important advantages, in relation to ease of implementation and 

interpretation, but many alternative methods for emulation are available, and there could well be methods 

that have better performance than multiple regression, particularly in situations where the training set is 

small. The assumption that the response variables are normally distributed is not particularly realistic, 

and could potentially be overcome through alternative models – it is difficult to construct a distribution 

on the wind farm impacts, due to the relatively complicated constraints on the values of these impact 

variables, so an alternative approach would be to model the baseline and windfarm SeabORD runs 

separately, and to capture the difference between these within the model. 

4.3. Future work 

We outline the potential for future work in this area, and, in particular, the potential for future work to 

overcome some of the caveats and limitations that we have highlighted. We distinguish in this section 

between (a) future work that is already funded and scheduled to take place within the NERC ECOWINGS 

project, (b) other future work that is already funded and scheduled to take place within the OWEC 

PrePARED project, and (c) broader ideas for future work that are not currently funded. 

4.3.1. Scheduled and funded future work in ECOWINGS WP4 

The ECOWINGS project will build heavily upon the work undertaken within this project, here we identify 

the elements of future work that are already scheduled to take place within that project. ECOWINGS also 

aims to use emulation to provide a computationally fast statistical approximation to SeabORD, but it 

builds on, rather than duplicating the work undertaken here, and aims to extend the work undertaken within 

this project in four key ways: 

1. It is designed to upscale estimates of displacement impacts to a regional scale, so will consider 

how emulation can be used to scale estimates of displacement mortality up to larger numbers of 

windfarms than those currently considered in SeabORD scenarios. 

2. By conducting runs that cover a more comprehensive set of SPA and windfarm – e.g., by using 

hypothetical windfarm footprints to allow windfarm-SPA characteristics that are not reflected in 

actual windfarms-SPA configurations to be considered, allowing the results of the emulation to 

be generalized more readily. 

3. It will involve a more comprehensive comparison and evaluation of different emulation methods. 



 

 

4. It will focus on an iterative process of model approximation and model refinement and/or 

simplification, in which the emulator is used to identify ways in which SeabORD can be simplified 

without substantial loss of accuracy, as well providing an approximation to SeabORD. 

Initial work within ECOWINGS is heavily focused on producing outputs on the potential for strategic net 

gain, so will focus primarily on (a). This will involve re-fitting the current emulation models to a larger 

training set of SeabORD model runs, which includes a larger set of colonies (thereby removing some of 

the key caveats around generalisability of the current emulation results), and using the results to develop 

an emulator that can rapidly predict impacts across a region (the North Sea). As part of the re-fitting there 

will also be more exploration of emulation model selection and predictive performance, including a more 

comprehensive assessment of out-of-sample performance (something that was heavily restricted here, 

due to the small number of colonies used for the SeabORD runs). 

The emulation work within ECOWINGS will exploit experience gained through this project by focusing on 

emulating impacts on adult mass and chick survival and not attempting to directly emulate impacts on 

adult survival. The mass-survival relationship within SeabORD is a simple statistical relationship, based 

on published literature, so we will link an emulator of the remaining parts of SeabORD to the mass-survival 

model, rather than attempting to capture the mass-survival relationship within the model. 

Later statistical work within ECOWINGS will investigate the potential to use more sophisticated emulation 

methods. Work will begin by reviewing the available methods, before investigating the performance of the 

most promising in providing accurate approximations to SeabORD outputs. Key potential alternative 

approaches include (a) mixed models that account for the structure of the model runs (and, in particular, 

the structure of the model in relation to colonies through the inclusion of a “colony” random effect, (b) 

Gaussian processes, which unlike multiple regression can account for autocorrelation in the unexplained 

variation within the emulator and (c) machine learning approaches, such as random forests or neural 

networks, which can have more flexibility in capturing non-linearities. 

The emulation research within ECOWINGS will be undertaken through work to identify model 

simplifications and refinements within SeabORD to improve computational efficiency without 

substantively compromising accuracy. This strand of work has already begun, through the use of a 

simplified energetics-based model to estimate displacement risk at a North Sea scale, but this work will 

become more closely linked to the emulation component of ECOWINGS as the project progresses, so that 

the two strands of work will inform each other. Within the context of the emulator, there will be further 

exploration regarding the choice of explanatory variables (e.g., windfarm and colony characteristics), and 

exploration as to how these relate to quantities used in the simplified mechanistic models of energetics. 

In particular, metrics relating to the proportion of birds that experience barrier effects will be considered, 

to see if these metrics are useful in explaining the remaining variability in impacts. 

During later stages of ECOWINGS empirical learning from the novel predator-prey data collection and data 

analysis taking place within the project will also be used to improve the structure of the model, to better 

reflect the fundamental mechanisms that underpin predator-prey-windfarm interactions.  

4.3.2. Scheduled and funded future work in OWEC PrePARED 

Work within the OWEC PrePARED project will develop SeabORD to include a new mechanism for the 

redistribution of prey during construction and operation of offshore windfarms based on new empirical 

data and modelling in the Forth-Tay and Moray Firth, adaptation of SeabORD to work with the MS sandeel 

habitat suitability model predictions across the North Sea, development of SeabORD to work with new 

prey availability maps within the Forth-Tay, and development of SeabORD to work with new joint predator-



 

 

prey distribution maps within the Forth-Tay. The project will also consider the development of new 

methods for simulating more realistic foraging tracks within SeabORD based on recent GPS tracking data. 

4.3.3. Other potential future work 

This work is dependent upon using GPS-based maps, which have been derived by upscaling the maps of 

Wakefield et al. (2017) to SPA level, to capture the spatial distributions of birds from each colony. Colony 

sizes are determined via Seabird 2000, as in Wakefield et al. (2017). Seabird 2000 currently provides the 

most recent census of colony-level abundance but is now more than 20 years old. The new seabird census 

will shortly supersede this, and there would be advantage in updating the analyses outlined here to reflect 

these new estimates of colony size. As well as amending the colony sizes that are used directly as inputs 

to SeabORD, this would also require the analyses of Wakefield et al. (2017) to be updated to incorporate 

these data. There is also a need to update the analyses of Wakefield et al. (2017) to incorporate more 

recent GPS tracking data, and to exploit recent developments in spatial statistics. For colonies with 

extensive tracking data there may be advantages in producing local models of spatial distribution that 

rely on less strong assumptions than those required for multi-colony analyses that involve a 

generalisation to untracked colonies. 

A more immediate issue lies in the upscaling of the Wakefield et al. (2017) maps to SPA level: the CEF 

data that provide the spatial linkage between Seabird 2000 subsites and SPAs are provisional, and need 

to be reviewed by stakeholders, and may potentially need to be updated as a result of this review. 

We have focused here on the three SeabORD species for which GPS-based maps are available. The fourth 

species included in SeabORD, puffin, lacks such maps, due to the relatively scarcity of GPS tracking data. 

Distance-decay maps can still be produced for puffin, but initial work within this project suggested that 

the resulting maps were difficult to develop rapidly to produce biologically plausible estimates and such 

work was beyond the scope of this project. Further work is therefore needed to quantify the spatial 

distributions for puffin. 

The impacts on adult mortality are heavily dependent upon the mass-survival relationship within 

SeabORD. This relationship represents a key step is translating estimates of displacement effects on 

behaviour and energetics into the consequences for demography, but it is a non-mechanistic component 

of SeabORD, and dependent upon published relationships from Oro & Furness (2002) and Erikstad et al. 

(2009) whose transferability to UK SPAs for the species considered here is not necessarily clear – 

particularly in the case of guillemot and razorbill, as the mass-survival relationship used for these species 

within SeabORD is based on a published relationship derived for another species (puffin). More recent 

analyses (Daunt et al., 2020) could allow these relationships to be updated, in a way that utilises more 

recent and directly relevant data and more comprehensively captures uncertainty, and there is potential 

for SeabORD to be updated to use the outputs of these analyses (Searle et al., 2022).  In the interim, we 

recommend that studies using SeabORD report changes in adult mass, as well as changes in adult 

survival/mortality, to futureproof against improvements to the representation of this relationship within 

the model. 

SeabORD currently relates only to interactions between seabirds and windfarms during the chick rearing 

period, but it would be possible to extend this to cover the entirety of the breeding season (Searle et al., 

2022). The ORJIP DISNBS project, which has just begun, will construct comparable models for the non-

breeding season.  This is substantially more challenging, because of (a) the relative lack of empirical data 

on spatial distribution and movement in the non-breeding season and (b) the differing biological 

constraints during the non-breeding season (the mechanisms within SeabORD are heavily focused around 



 

 

the central place foraging constraint, which is typically much stronger in the breeding season than the 

non-breeding season). 

Calibration is a key step within SeabORD in ensuring that the values of “prey level”, which is a key 

parameter that lacks biological information and which effectively captures a range of processes not 

currently represented within the model, are specified so as to produce baseline results for productivity, 

adult mass loss and other metrics during the chick rearing period that are consistent with empirical data. 

The approach taken to calibration is currently manual and uses a visual assessment to select the plausible 

range of prey values, so there would be benefits in moving to a more automated and systematic approach, 

such as Approximate Bayesian Computation (ABC) or History Matching. 

SeabORD also contains a range of other biological parameters, whose values are derived from the 

published literature or from expert judgement. Uncertainty in these parameter values is not currently 

accounted for, but in order for SeabORD outputs to provide a more complete quantification of uncertainty 

it would be valuable to also consider uncertainty in these parameters. Expert elicitation may provide a 

mechanism to capture the level and form of uncertainty in each of these parameters. 

Finally, there is potential to extend SeabORD to include other species (Searle et al., 2022). 

4.4. Conclusions 

This work has illustrated the potential to use SeabORD as a way of estimating wind farm impacts on adult 

mass loss, and adult and chick mortality, and of estimating variability in these rates between colonies and 

wind farm scenarios. It has also demonstrated the potential to use statistical methods to provide an 

approximation to SeabORD, thereby enabling displacement mortality to be estimated for a much larger 

number of scenarios than would be computationally feasible within SeabORD. Emulation methods also 

provide a useful tool for studying the properties of mechanistic models like SeabORD, and, in this case, 

have revealed useful insights regarding the model. 

The results of the emulation work- should be treated with substantial caution, given the high levels of 

noise relative to the strength of the fitted relationship, and the current results do not provide a sufficient 

basis for predicting displacement mortality for new SPAs or windfarms. 

The work has also highlighted that, although emulation can overcome some of the computational 

challenges imposed by the use of a mechanistic individual-based model such as SeabORD, it is still 

fundamentally constrained by the computational time required to run the mechanistic model. This is 

because the emulator needs to be trained using a reasonably large number runs of the mechanistic model. 

A key constraint lies in the ability to run SeabORD for large numbers of colonies, due to the continuing 

need to calibrate SeabORD manually for each colony. The results presented here should therefore be 

interpreted cautiously because the limited number of scenarios considered may mean that the results do 

not generalise to SPAs or windfarms for which SeabORD has not yet been run – this is particularly true 

because the model selection and cross validation indicate evidence for variations in the behaviour of 

SeabORD between SPAs (presumably due to differing bird distribution maps and differing forms of 

interaction between these maps and the windfarm footprints). 

SeabORD, and emulators of SeabORD, provide model-based estimates of displacement mortality rates 

that can be compared against those obtained via expert elicitation (WP2), and are helpful in highlighting 

explainable sources of variation in these rates – this is explored further in WP4. The results obtained here 

can, in principle, provide a basis for quantifying displacement mortality rates, and variations in these rates 



 

 

in relation to colony and windfarm characteristics. The results obtained here tentatively suggest that 

SeabORD-based variations in displacement mortality within and, especially, between, colonies cannot be 

explained solely using the nine colony and windfarm characteristics considered within this emulator, 

suggesting that the emerging properties of SeabORD are complex and subtle, which is to be expected 

from a large process-based mechanistic model. As such, the results obtained here are useful in sense-

checking, and providing context for, the results of the expert elicitation (EE), and we explore this further in 

WP4 by considering how the SeabORD and emulation results may be consistent with the definition of 

displacement mortality rate used in the EE. Neither the EE nor model-based results are derived from 

empirical estimates of displacement mortality, however, so both sets of results need to be interpreted 

cautiously.  

Work within the ECOWINGS project will further extend the work undertaken here and overcome some of 

the limitations of the current work by using a larger training set of SeabORD runs and considering more 

sophisticated emulation methods. 
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