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ORJIP Offshore Wind

The Offshore Renewables Joint Industry Programme (ORJIP) for Offshore Wind is a collaborative initiative
that aims to:

e Fund research to improve our understanding of the effects of offshore wind on the marine
environment

e Reduce the risk of not getting, or delaying consent for, offshore wind developments

e Reduce the risk of getting consent with conditions that reduce viability of the project.

The programme pools resources from the private sector and public sector bodies to fund projects that
provide empirical data to support consenting authorities in evaluating the environmental risk of offshore
wind. Projects are prioritised and informed by the ORJIP Advisory Network which includes key
stakeholders, including statutory nature conservation bodies, academics, non-governmental
organisations and others.

The current stage is a collaboration between The Carbon Trust, EDF Energy Renewables Limited, Ocean
Winds UK Limited, Equinor ASA, @rsted Power (UK) Limited, RWE Offshore Wind GmbH, Shell Global
Solutions International B.V., SSE Renewables Services (UK) Limited, TotalEnergies OneTech, Crown Estate
Scotland, Scottish Government (acting through the Offshore Wind Directorate and the Marine Directorate),
and The Crown Estate Commissioners.

For further information regarding the ORJIP Offshore Wind programme, please refer to the Carbon Trust
website, or contact Ivan Savitsky (ivan.savitsky@carbontrust.com) and Zilvinas Valantiejus
(zilvinas.valantiejus@carbontrust.com).
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Who we are

Our mission is to accelerate the move to a decarbonised future.

We have been climate pioneers for more than 20 years, partnering with leading businesses,
governments and financial institutions globally. From strategic planning and target setting to activation
and communication - we are your expert guide to turn your climate ambition into impact.
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Singapore and Mexico. To date, we have helped set 200+ science-based targets and guided 3,000+
organisations in 70 countries on their route to Net Zero.



1. Introduction

Within the environmental impact assessment process for offshore wind farms (OWFs) and marine
birds, legislation requires an understanding of the potential connectivity between designated
protected populations (Special Protection Areas, SPAs) and OWFs, and the magnitude of potential
impacts from specific effects, such as collision risk. At-sea survey data (e.g. boat or aerial surveys)
forms the basis for assessing baseline spatial abundance and distribution of seabirds within a wind
farm footprint and the surrounding area. Tagging birds from breeding colonies provides a
complimentary method for estimating spatial abundance of birds of known provenance. To assess
the impacts of offshore renewables upon SPAs for all types of data, it is necessary to estimate the
percentage of birds that may originate from each SPA, termed apportioning. That way, the potential
numbers of birds impacted by specific effects can be ascribed to SPAs through potential connective
pathways. However, there are many methods of deriving such apportioning (Table 1), and they vary by
the type of data used at the outset and vary in complexity and assumptions used. These methods
may also vary in application potential for specific bird species, and have also been the subject of
specific workshops for targeted groups of species, such as gulls (e.g. Quinn 2019).

In general, apportioning relies on being able to estimate (a) the size of each breeding colony and (b)
the spatial distribution (e.g. utilisation distribution; UD) of the birds from each colony, because the
proportion of birds originating from each colony will be dependent on the product of the colony size
and the estimated spatial distribution of birds from that colony. Apportioning methods differ largely
based on the sources of data and statistical methods used to estimate colony-specific spatial
distributions.

There are broadly five different approaches that are currently available:

a. Scottish Natural Heritage (SNH, now NatureScot) Apportioning Tool
Marine Scotland Science (MSS) Apportioning Tool

c. New methods using Global Positioning System (GPS) tracking data in a radial time-distance
function approach

d. Biological Defined Meaningful Population Scales (BDMPS)

e. New methods for the non-breeding season based on light-level Geolocation (GLS) data

These are outlined below in Table 1. The SNH apportioning tool is split into two separate evaluations
since a further update of the model has been developed, so the total number of methods considered is
six (see Table 1). Here, we carry out a full appraisal of each method, assess the advantages and
disadvantages of each and assess data requirements and availability.



Table 1. Summary of the main methods of apportioning.

Tool Season Methodology

Scottish Breeding | The proportion of birds that originate from each colony, at a

Natural particular at-sea location, is proportional to size of the colony

Heritage (total number of breeding pairs) multiplied by the inverse of the

Apportioning squared distance between the point and the colony, based upon

Tool (SNH the great circle distance between the point and colony.

2014)

Scottish Breeding | The proportion of birds that originate from each colony, at a particular

Natural at-sea location, is proportional to size of the colony (total number of

Heritage breeding pairs) multiplied by the inverse of the squared distance

Apportioning between the point and the colony, based upon the shortest distance by

Tool (SNH seaq, reflecting the fact that most seabird species avoid flying over

2018) land.

Marine Breeding | GPS tracking data allow us to avoid assuming that bird densities

Scotland and non- | decay in proportion to inverse distance squared, and to estimate

Science breeding | this relationship empirically, and also allows other spatial

Apportioning characteristics of bird behaviour (e.g. habitat association) to be

Tool (Butler et estimated and accounted for. The MSS Apportioning Tool uses the

al. 2020) maps produced by Wakefield et al. (2017) from multi-colony GPS
tracking data to estimate apportioning percentages for every cell on
a relatively fine spatial grid that covers the entire UK Exclusive
Economic Zone (EEZ).

Sage 2022 Breeding | Uses a time-distance approach in radial bands away from the colony
that in turn can be used to quantify the number of birds that may use
an OWF and that can then be ascribed back to breeding colonies;
application on gulls has allowed assessment for offshore/onshore
contexts. Generalisable at the species level and has application for
theoretical evaluation of impacts of wind farms apportioned to
colonies, building on the SNH method.

Biologically Non- Combines knowledge about the distribution of birds outside the

Defined breeding | breeding season gained from a range of data sources such as ringing

Meaningful recovery data, and to a lesser extent GPS tracking to apportion birds

Population to SPA populations based on the relative sizes of the populations

Scales wintering in UK waters and, the size of the population within each

(Furness SPA.

2015)

New GLS Non- Light-level GLS data offer the opportunity to characterise area use

methods breeding | and occupancy of species for adults and immatures during the non-
breeding season part of the annual cycle, and using kernel density
and overlap approaches, allowing further apportioning to potential
colonies of origin.




2. Details of the approaches

Scottish Natural Heritage Apportioning Tool (SNH 2014, 2018)

Background

This rule-based tool was developed by SNH (now NatureScot) based on the principle that breeding
season area usage of seabirds is limited by central place foraging constraints of individuals, and
therefore can be determined by use of foraging ranges of seabird species (Thaxter et al. 2012). In turn,
the relative proportional number of individuals and their connectivity to SPAs can be estimated using a
theoretical approach based on three key pieces of information: the size of colonies, the area within
foraging range that is sea, and distance, either Euclidean (SNH 2014, presented below) or shortest sea
route upon later revision of implicit assumptions of travel constraints of seabirds over land (SNH 2018).
The proportion of birds at location i that arise from colony j will be proportional to (SNH 2014):

(Size of colony j) * (1 - proportion of the area within the foraging range of colony j that is sea) /
(Distance from location i to colony j)?

[Equation 1]

The tool therefore uses three weighting factors: the size of the colony, the distance of the colony from
a development, and the sea area. Colonies with greater populations will contribute more individual
hypothetical birds to the assumed distribution in the area and thus the birds recorded within a survey
of an OWF site will proportionally assign more individuals back to larger populations. Distance
measurement is taken from the centre of an OWF to the centre of colonies, but it is acknowledged that
complexities may arise in boundary issues; further, the inverse-squared distance weighting factor
relates to expected declines over proportional area increase, with a further revised assumption included
in SNH (2018) with improved realism whereby distance is calculated as the nearest straight-line over-
sea distance.

Strengths and weaknesses

As noted by Butler et al. (2020), the SNH apportioning tools have no minimum data requirements,
making them attractive for the study of large numbers of colonies across all breeding seabird species,
and are very straightforward to apply, thus also representing cost-savings. The use of the method
across all species is an advantage as more detailed methods such as the MSS approach may require
tracking data that may not be feasible for some species. However, they suffer from a lack of biological
realism, making strong assumptions; i.e. the lack of use of empirical data therefore assumes all
populations have the same distance-decay function over space, and further do not account for effects
of competition between neighbouring colonies and environmental heterogeneity that may influence
space use within foraging range of species, i.e. homogenous species distributions are assumed. Many
of these aspects are acknowledged in the approach documentation, hence the advice has therefore
been for this approach to be used until a more complex, evidence-based model is developed (SNH
2018).

In the absence of GPS tracking data, however, it is still possible to extend the SNH Apportioning Tool
so that it estimates the rate of decay of bird density with distance empirically for each species, using



published foraging ranges, rather than fixing densities to always decay in proportion to inverse distance
squared. This is a worthwhile task because further studies have found that the effect of distance to
colony is crucial in determining the spatial distribution of seabirds during the breeding season (e.g.
Wakefield et al., 2017), and systematic biases in quantifying the relationship between bird density and
distance to colony will therefore lead to substantial errors in the calculation of apportioning
percentages. More recent estimates of foraging ranges are also now available (Woodward et al., 2019),
and these can be used to estimate the rate of decay with distance for each species and extend the SNH
Apportioning Tool to use these estimated decay rates, as opposed to a flat 1/distance”2 fixed rate. The
SNH Apportioning Tool further assumes that foraging ranges are the same for all colonies, but
estimates of inter-colony variations in foraging ranges are also now available (Woodward et al. 2019),
making it also possible to extend the tool to quantify the uncertainty in apportioning percentage that
results from inter-colony variability in foraging range, using a simple simulation-based approach (MS
SEANSE project; Searle et al. 2020).

Data requirements and availability

As mentioned, the method does not require extensive detailed data, and can be parametrised just with
information on species foraging range and the size of individual colonies. The former foraging range
information is available from reviews for many UK species using Thaxter et al. (2012) or more recent
updates from Woodward et al. (2019). Colony size information for seabirds is available from the JNCC
Seabird Monitoring Programme (SMP). As is common with all methods, it is important to make sure
the eventual colony dataset upon which the apportioning is made is current and robust. To assess true
distance decay functions within this approach, colony-specific tracking data can be used, constituting
a further data requirement if such precision of the decay function is required.

Marine Scotland Science Apportioning Tool (Butler et al. 2020)

Background

The MSS Apportioning Tool provides an alternative to the SNH Apportioning Tool. This method (see
Butler et al. 2020), introduces an R interface to a habitat-association modelling approach using species
tracking data based on the method of Wakefield et al. (2017), thus, the MSS Apportioning Tool uses an
empirical modelling approach based on these habitat use models. The Wakefield statistical method
uses a weighted Poisson generalised linear mixed effects model (GLMM), considered to be cutting-
edge — see Butler et al. (2020) for further appraisal of the method itself. At present the model is
available for four species of seabird (European shag Phalacrocorax aristotelis, black-legged kittiwake
Rissa tridactyla, common guillemot Uria aalge, razorbill, Alca torda), and as such these statistical
environmental associations have already been determined, and thus the Poisson GLMM can be used
to calculate apportioned percentages of birds for each colony and spatial location. The MSS
Apportioning Tool therefore carries the same assumptions as the Wakefield method, that the colony-
specific utilisation distribution (proportion of birds from colony j in area i) is a mathematical function
of accessibility (e.g. distance to colony), neighbouring competition, and further environmental variables
that may drive concentrations in distributions. As noted by Butler et al. (2020), the proportion of birds
in area i that originate from colony j can be represented as:



(Proportion of birds from colony j within area i) * size of colony j
[Equation 2]
re-normalised to sum to 1 across all colonies.

The method also encompasses ‘sub-methods’ here termed variants that make novel improvements on
the original Wakefield approach, i.e. here defined as the same as the original paper using the same
data, but with the MSS apportioning extension applied; the UCC variant extends this further, by including
more recent population data, as Wakefield et al. (2017) relied on Seabird 2000. For this ‘UCC’ model
variant, Butler et al. (2020) use either more recent data or imputed counts (where more recent data are
not available), and although for the four species considered there have been some notable population
changes, agreement between the original Wakefield model and UCC models was high. A further variant
considered non-breeding as well as breeding birds (BNB) by including spatial survey data to estimate
distribution (Waggitt et al. 2020). The BNB variant performed relatively well, for example showing fairly
good agreement with the Wakefield method through application of the models to independent datasets,
but notable differences emerged; these were particularly driven through the different relationships over
age classes between spatial distribution and distance to the colony, i.e. immature birds may or may not
be similarly distributed to adults over distance, which was also species-specific with varying results
among different species. Further issues with the BNB model variant arise due to the lack of
comparability in the different data sources of GPS and at-sea data used as well as temporal mismatch
in data sources. To rule out potential error, however, it was concluded as meriting further investigation
pending more work (Butler et al. 2020).

Strengths and weaknesses

An advantage of the MSS approach is that it accounts for species- and colony-specific habitat use,
informed by the environmental availability of each colony. This makes the eventual assignment of
number of individual animals back to colonies more realistic by incorporating mechanistic linkages to
explain habitat use based on environmental (prey-proxy) drivers and interactions. The method brings in
important determinants of at-sea usage above that of simply population size, including the distance to
conspecific populations within and between species, accounting for density-dependent sympatric and
parapatric competition effects. Further, the method can incorporate the distribution of non-breeders
during the breeding season if using the BNB variant of the model, combining different data sources, but
that also includes further processing of at-sea datasets and is dependent on their availability. Of note
is that the MSS tool (Butler et al. 2020) was concerned with calculating, for a given location, the
percentage of birds present that come from sites for each species, and thus estimated the ‘relative’
numbers of birds potentially originating from each site.

However, a disadvantage is that the tool, and the maps that underpin it, is currently only available for
the four species as outlined above. The MSS tool may need to be applied to these same species but
incorporating more recent tracking data, which may alter the habitat relationships observed and the
outcome of the apportioning. Alternatively, new species may need to be considered that may require
different covariate information that underpins the habitat association or different model structure.
Newer (i.e. updated) covariate information may also need to replace existing data within the original
model. Any further use of the tool for more recent data or different species would involve re-building of
the Wakefield model and statistical relationships for further use in the MSS tool. However, building the
modelling framework ‘from scratch’ represents potentially very high time-effort overheads in data



acquisition (which may be in the region of terabytes of data processing from new remote sensing
datasets), model set-up, and importantly computational run-time costs. As acknowledged by Butler et
al. (2020), the existing tool already has extensive resolution and a large amount of information to run
the R interface. Wakefield et al. (2017) also acknowledge computer run-time to have been an issue in
the development of the models underpinning the MSS tool, and state a number of experimental phases
that were carried out in a stage-wise manner before settling on the final methodology; whether such
steps would be needed for completely fresh data, or even a variation of the underlying statistical model
itself, is at present unknown. Finally, the method, to date, has only been applied to species with relatively
short tracking durations within the breeding season, and it is unknown how extensive the modelling
may be with longer duration datasets and those that span multiple years for the same individuals, thus
likely requiring appraisal of the statistical assumptions underpinning parts of the model. Further use of
variants of the MSS model to incorporate distribution of non-breeding individuals during the breeding
season would require further sourcing of at-sea data for those species, which may also require
extensive collation. The BNB variant of the model also assumes the ratio of breeders to non-breeders
is constant across all colonies; the ratio is related to the demography and population structures of the
populations, likely to differ between increasing and declining colonies, for example. Further, the method
assumes the same explanatory environmental covariates are used for both population components.

A further current drawback of the MSS tool and the Wakefield method is the tracking data underpinning
the modelling relate to area used for all behaviours, which also includes travelling (commuting) to and
from a central place (breeding colony) and resting as well as the likely key behaviour of interest
‘foraging’ that may be most closely associated with habitat/covariates modelled. As such the models
may not properly capture the functional drivers of the spatial distribution. This could easily be rectified
by re-running the models but only using the foraging locations, as assessed through additional sensors
such as time-depth recorders, or movement modelling approaches such as Hidden Markov Models.

The MSS approach outlines two sources of uncertainty from (a) the overall percentage apportioning
values (i.e. % birds from a given colony in space in relation to the total number expected for all colonies),
associated with the number of breeding birds (colony sizes), and the estimated UDs, and (b) given the
percentages, the uncertainty associated with a given sample of birds of particular size that feeds into
the calculations. The latter was addressed by simulation and re-estimation of percentages for varying
sample sizes of birds to give a 95% confidence interval. However, the former (a) above, could not fully
be accounted for; as stated by Butler et al. (2000), colony size uncertainty was absent from Seabird
2000 Seabird Census, and although the error in UDs for colonies could be extracted, pseudoreplication
was an issue within the Wakefield underlying approach preventing reliable use of those model errors.
Thus, only ‘partial’ estimates of uncertainty are available for the MSS method due to the methodology,
which is still an improvement on the SNH and BDMPS methods where uncertainty could not be
represented.

Data requirements and availability

A full appraisal of the variables and their availability for further use of the ‘UCC’ variant of the MSS
model are provided in WP2 of this project. However, the model requires tracking data and further
information on foraging range of species that are further combined with covariates with the habitat
modelling framework. As also noted above, the BNB variant of the model can include non-breeding
individuals during the breeding season by sourcing data from at-sea survey data collection platforms
such as boat or aerial surveys.


https://ctprodstorageaccountp.blob.core.windows.net/prod-drupal-files/2023-10/WP2%20datasources.pdf

Tracking data are now available for a variety of species of seabirds in the UK. However, related to the
above uncertainty, a further concern with the MSS approach is that application of the method may be
driven by the overall sample of empirical tracking data across colonies within the species’ range that
may be available. Extrapolating predictions based on only a few sites may therefore be problematic.
Related to this is the geographic distribution of colonies, which could be biased to a part of the species
range — for example, groups of animals could behave differently or use different habitats, which is
further linked to resource availability and could introduce model transfer errors. These are wider points
therefore associated with appropriate coverage and characterisation of the species and capturing
natural behavioural variation within the population. In the case of large gulls, such as lesser black-
backed gulls (Larus fuscus) for example, the behaviour and use of offshore areas may vary by different
breeding ‘strata’, i.e. groups of breeding environments that vary by geography (i.e. urban, natural
coastal, inland and island sites), which would therefore require consideration of sample size coverage
of those environments.

Time-distance function (Sage 2022)

Background

A further very recent method has been developed by Sage (2022). This approach is based on a time-
distance function (TDF) where the total time spent (t) within given distances for a colony is estimated
as a proportion of the entire colony time budget across the season, over distance segments (r) up to
the maximum foraging range radius (rmax) — see Equation 3 below; note also that the t; sum over all radii
equates to the total seasonal colony time budget. The method has so far only been applied to lesser
black-backed gulls. This method is also solely focused on tracking data and seeks to better quantify
the decay in distance utilisation based on spatio-temporal units rather than pure spatially-static ones,
as a realistic time-distance-decay function. The TDF then has merit in further application in applied
scenarios for OWFs - see below. The TDF of each colony (TDFc) was first estimated by summing up
all GPS time intervals of all individuals of a colony for incremental radial distances of 1 km from the
colony centre, to calculate the proportion of time spent within each radial distance, B.

r Tmax
=t ) t [E3]
i=0 i=0

[Equation 3]

Colony-specific TFs were further combined as a species-wide TDF by normalisation (dividing each
distance by the maximum distance of the colony) and taking a median proportion of time for each
distance interval, in turn multiplied back by the normalised distance to rescale the TDF (Sage 2022).
Non-linear models were then used to describe the shape of the TDF statistically.

The TDF method can potentially be used for apportioning across multiple colonies. Using hypothetical
scenarios Sage (2022) used the TDF to estimate the proportion of time spent (at distance) in the
“Development Area” of hypothetical proposed OWFs. The first step in this process was to estimate the
proportion of time in the Development Area PD. for a given colony c. This is estimated by first
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calculating the proportion of time birds spend at the required distance from the colony as estimated
from the TDF using cumulative time proportion between two distance measurement increments. This
temporal proportion is then divided by the area of the band (assuming a circular distribution) to give a
relative density in the area. This value can then be multiplied by the area of the wind farm to give PD..
The estimates of PD. can be used to calculate colony site-specific weights in apportioning depending
on the colony size, i.e. weight = PD. * colony size (N¢). Across multiple colonies, the site weights can
then be further normalised to give proportional weights. This calculation can be made for land or sea
masks of the distribution for relative available land or sea area. Explicit comparison is also made by
Sage (2022) to the SNH apportioning methods (SNH 2018) over varying hypothetical OWF distances
from colonies. The approach above could be used with a species-wide TDF as estimated across
observed colonies that could be transferred potentially to where tracking data has not been collected.
Note, however, these methods are not yet published and are a new approach that has not yet been
widely tested.

Strengths and weaknesses

The method is empirically driven but can also be applied/transferred to colonies lacking data using the
generalised species-wide TDF, which is a strength of the approach. Further, complexities can be
investigated in movements over time, e.g. for seasonal effects moving beyond just the spatial
component of prior methods. Additionally, the method explicitly deals with onshore and offshore
components, which is important for species that may span both environments - this is achieved by
considering parts of the time budget per colony spent in each environment. The Wakefield et al. (2017)
MSS tool method only considered species using marine environments. This may be suitable for other
species solely using marine environments but could require further model development to account for
more generalist species that use a wider range of different environments. The TDF method is also
simpler than that of Wakefield et al. (2017) and has less setup overheads and model runtime
computational costs, and is further advanced than the SNH apportioning approach by using elements
of time to estimate the TDF rather than an inverse distance weighted approach. That said, the method
still makes assumptions that the species-wide TDF is appropriately characterised and biologically
meaningful, dependent on the data feeding in (as noted above under the MSS approach).

In terms of uncertainty, the TDF method also uses a best-fit non-linear regression line fitted to the TDF
proportion of time~distance relationship to better draw out the trends, which will also carry a small
amount of model error. Theoretically, the species-wide TDF across all colonies will also carry
aggregation error, for example a median and upper and lower confidence limits of the TDF curve, which
could then be propagated further for example if being applied more widely in apportioning, e.g. for
colonies with no data. However, as noted elsewhere, the TDF method is in the early stages of potential
application, and therefore if the method is refined, the limitations may change.

However, the TDF does have similar disadvantages to previous SNH apportioning methods in that it
assumes a radial approach for the time-distance function, thus assuming homogeneity in radial
distributions, i.e. without further considering environmental covariate correlations with hotspots of use.
The TDF approach can be applied where no tracking data exists, but the use of the upper radius would
likely require use of species-level foraging ranges - this requires further testing and exploration. In
addition, the method may lack realism, for instance by not accounting for conspecific sympatric and
parapatric competition as in the MSS Wakefield method. The method thus needs observed tracking
data to reliably parameterise the initial TDF for the species. As the TDF method is a new approach, the
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processing and calculation time to reach eventual apportioning estimations is unknown at present.
However, with a coded workflow, the process will be substantially less than the Wakefield MSS
approach, being, for the most part, a data manipulation exercise (rather than statistical computation)
with simple GIS tasks (i.e. offshore delineation), binning of data over distance and summed time
calculations. With a sizeable tracking dataset, the TDF approach would need increasing data
manipulation, but one that is not insurmountable.

Data requirements and availability

As above, the data required for this approach are tracking datasets to initially build the TDF but may
require further information on species foraging ranges in estimation of a species-wide TDF. The method
also requires information on population estimates of species for sites/colonies where apportioning is
to be made; however, this is the case for all other methods reviewed here. The method also suffers the
same constraints as the Wakefield method in characterising the species and sample size of number of
colonies with tracking data at the outset. However, the method otherwise has minimal overall
complexity.

Biologically Defined Meaningful Population Scales (Furness 2015)

Background

Currently, the BDMPS methodology (Furness 2015) is the default method for apportioning numbers of
seabird species to colonies in the non-breeding season. This approach arose from work within the UK
renewable energy industry and identified a need to understand and define non-breeding season
seabird populations for apportioning work. Areas within the biogeographic range in UK territorial
waters are unlikely to be homogenous in spatial distribution and so may contain quite different
numbers of birds whose provenance may differ. This was the main motivation behind the
development of the BDMPS method, and facilitated the definition of geographic scope of these
populations for different species, for more meaningful use in apportioning of birds within the Special
Protection Area (SPA) network. This work, therefore, informed the Habitats Regulations Assessment
(HRA) process within Environmental Impact Assessments. Such BDMPS areas may be anywhere from
the biogeographic range of a species downward (Furness 2015) and at lower scales relates to the
biogeographic population with connectivity to UK waters, i.e. UK breeding individuals plus overseas
immigration/emigration during the non-breeding season. The report by Furness (2015) defined three
main aspects for further use in ElAs for several UK seabird species: (a) the biogeographic population
with connectivity to UK waters, (b) numbers of birds (adults and immatures) within seasonal periods,
and (c) the numbers of birds per season in BDMPS for each species, with contribution from UK and
overseas further defined.

Seabirds may experience four main effects from offshore wind farms: collision, displacement, barrier
effects and indirect effects on prey, and the BDMPS method has been used for apportioning within
ElAs, particularly for collision and displacement effects. Here, density is first estimated within wind
farm footprints from at-sea survey data. For displacement, simple matrices of displacement rate and
mortality rate per species have typically been used to highlight likely rates (i.e. based on expert
judgement) to inform the numbers of birds impacted. These values can then be used in conjunction
with the BDMPS for that species and seasonal definitions, summing winter and summer components,
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to apportion those impacts within the SPA network. For the effect of collision, a collision risk model
(CRM), such as the Band (2012) model and subsequent versions and extensions (Masden & Cook
2016) is initially used for estimating potential numbers impacted by the development; this stage also
requires various data inputs that are beyond the scope here but see Masden & Cook (2016); thereafter
apportioning follows a similar workflow as above, to apportion to SPAs. This is achieved by dividing
the SPA population by the relevant seasonal BDMPS per species, to obtain the proportion of the
BDMPS population expected to originate from the SPA.

Strengths and weaknesses

The BDMPS method is simple and relatively straightforward to apply, using a spreadsheet to transfer
pieces of information within a stage-wise approach. The method brings together existing information
and knowledge to make better-informed judgements, and was an important step forward in being able
to attempt apportioning for the non-breeding period. However, the method naturally carries several
limitations, with decisions often based on limited data with some further strong biological
assumptions made.

Expert judgement is used within the BDMPS initial estimations, from the initial regions used to
originally estimate the BDMPS in Furness (2015), through to the assumptions made with respect to
specific effects as part of EIA. For the BDMPS regions, the numbers of birds in different areas are not
well known, and the movement patterns of immatures are highly uncertain, which is a constraint on
estimating proportions of UK birds from overseas, requiring assumptions based on best available
data (Furness 2015). Expert biological judgement is therefore made when initially identifying the
species-specific BDMPS, which further, may also not remain static over time. The BDMPS areas can
be very large in size, and there is an implicit assumption, that each not only has a constant population
per species but that the areas of sea within each BDMPS have the same apportioning proportions.

For assessment of effects and eventual apportioning, decisions are made for mortality rates for
displacement and avoidance rates for collision risk, often taken as a single species value for
components of populations that could have much greater complexity temporally or spatially for a
given species. Further assumptions for specific effects in relation to offshore wind farms are also
made for example in collision risk assessment assuming spatial homogeneity in collision risk, for
example for passage movements. For displacement, the approach makes simplistic assumptions of
population demography. Summer and winter seasonal components (for adults and immatures) are
assumed separate and are considered additively in the final estimations of numbers; this calculation
could double count mortality given that in summer changes in body mass are not independent of
winter mortality. Effects on productivity are ignored, i.e. the loss of animals estimated for each
population is a single static estimate without further consideration of effects on reproductive output.

Within each of these steps there is no quantification of uncertainty.

Data requirements and availability

In the initial identification of BDMPS, the flux movements of birds from the UK to and from overseas
involve consideration of a range of data types, such as seawatching data, ringing data, geolocation
information (where available), and other markers of origin such as biometric variation, genetic
phenotypic variation, stable isotopes and pollutants (Furness 2015). These data are broadly available
across most species; however, as noted above, these data carry approximation and generalisation
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meaning the initial BDMPS characterisation has numerous assumptions and unquantified levels of
error. Numbers of birds in UK waters come from at-sea survey information such as ESAS,
biogeographic estimates from Stroud et al. (2001), and more recent updated values. Similarly, the
data for estimating density comes from at-sea surveys such as aerial and boat-based platforms
carried out within the wind farm footprint.

Demography data (survival rate, age of first breeding, productivity) can be included within this method
for the species assessed, for example, to assess apportioning through to different demographic
components of the population, i.e. to ascertain numbers of immature birds per breeding population.
As noted above, the timing of breeding and migration are also required for seasonal delineations per
species, also sourced through a review of the literature (Furness 2015).

Future work could include updating the population sizes used, most logically to be undertaken on
completion of the new Seabirds Count full UK census. Priority for future work would also include
updating with the latest information on demographic rates (survival rates, age of first breeding,
productivity), in order to most accurately assess the numbers of immature birds. Adjustment is also
made for seasonal phases that may differ from the original recommendation (Furness 2015). Hence
future work could incorporate the latest data and insights into timing of breeding and migration from
populations breeding inside and outside the UK to inform those periods.

New tools for the non-breeding season based on GLS data

Background

Geolocation-immersion (GLS) tags are now widely deployed across several UK seabird species (e.g.
Linnebjerg et al. 2013, Harris et al. 2015). These devices are light-level data loggers and are lightweight
and long-lasting. Since position is estimated using ambient light intensities, elapsed time, and saltwater
immersion, GLS locations have relatively large uncertainties of 100-200 km (Merkel et al. 2016).
However, they offer important insights into the movement and distribution of seabirds during the non-
breeding season that cannot be obtained using any other method (e.g. year-round deployments of GPS
loggers is not currently an option for many seabirds). These data offer the opportunity to develop a
data-driven approach for apportioning in the non-breeding season. However, there are currently no
examples where such an approach has been carried out. Consequently, the following appraisal of this
method is based on any further anticipated data manipulation and potential strengths and weaknesses.

If colony-specific utilisation distributions (UDs) can be estimated from GLS data then, as with GPS data
in the breeding season, these colony-specific UDs can, together with counts of colony size, be used to
apportion birds to colonies within the non-breeding season. Modelling of spatial distributions from GLS
data has similarities with the modelling of GPS data, but there are some important differences in the
data collected:

e GLSdata are much lower frequency than GPS data — typically 1-2 records per day, which means
detailed modelling of spatial movement is not possible.

e Levels of observation error in GLS data are much higher than for GPS data, and are sufficiently
large that models which ignore observation error are unlikely to be defensible.

e The levels of observation error in GLS data are likely to be heterogeneous, and it seems that as
they vary according to known factors (e.g. time of year) this variability can be modelled.
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These differences mean that the methods used to build models to apportion in the non-breeding season
will likely differ from those used in the breeding season. However, using advanced kernel-density
estimation methods, the above data issues could be accounted for and thus produce utilisation
distributions in a similar way as used for the breeding season. The GLS tracks could be split into
different phases such as moulting and wintering seasons and utilisation distributions obtained. Several
steps, however, may be required, for example, initial data visualisation, the aforementioned kernel
density estimation, and further overlap assessment and novel apportioning using predicted shared
space estimated among populations.

Data visualisation in space and time can allow the tracks from colonies to be mapped and uncertainty
1o be explored. A valuable approach could be the use of space-time cubes (Demsar et al. 2015), which
visualise spatio-temporal data. This approach can gain insights into pathways to their non-breeding
sites including whether all birds from a colony use the same transition corridors or whether their tracks
vary markedly by individual.

Utilisation kernels are a broad church of methods that range in complexity from time-static approaches,
through to more complex distribution models. For satellite-based data, advancements have been to
characterise location uncertainty into ecological process models such as resource selection functions
(e.g. Thurfjell et al. 2014) and movement approaches (e.g. McLintock & Michelot 2018). Recently, for
GLS data, azimuthal telemetry models (ATM) have been proposed that include location uncertainty
(Gerbel et al. 2018) and could be used to produce a set of utilisation distributions as part of the
apportioning workflow.

Area overlap metrics, such as Bhattacharyya’s affinity, between sets of distributions could then be
generated i.e. among colonies, species, and per year (if such data allow). Estimation of potential
population usage could then be generated in a similar way to breeding season data. These overlaps
could then allow apportioning to be made (scaled up to population size using colony counts) by looking
at the shared space use of a combined set of colonies, with a measure of uncertainty. New regions to
aggregate colonies could further be defined for colonies of a given species without tagging data, and
apportioning carried out according to the region they are placed in.

As a final step in this potential workflow, species will vary with how consistent their distribution is by
colony and over time. A qualitative Red-Amber-Green visual system could therefore be useful to label
how confident apportioning metrics are for each species/area.

Strengths and weaknesses

This approach has not been used and so cannot be fully scrutinised. The steps involved do require a
degree of modelling and computational overheads, thus being more complex than for example a simple
spreadsheet-based approach of the BDMPS. However, the use of empirical information to define non-
breeding home ranges would be a significant advancement over the expert-judgement approach used
within the BDMPs (see section 2.4 above). Further, the incorporation of error, if feasible within the
modelling workflow, would make this method one of the few to explicitly deal with uncertainty.

Although new regions could be defined for colonies without tracking data, it is perhaps less clear how
well this will work in practice, i.e. in a more predictive sense without further habitat association
modelling. The GLS approach as with all methods directly using tracking data, assumes the data
collected adequately characterise the species non-breeding distributions, which may carry significant
error if colonies around the UK are not widely represented. Further issues of annual and within-seasonal
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variation complexity may also become apparent, and the use of utilisation distributions directly
incorporating error is perhaps more in its infancy for azimuthal location data, although advancements
have been made recently. Overall, this method would be worth exploring for further datasets if they
become available over a suitable number of colonies for a given species.

Data requirements and availability

As above the GLS data are the main input into this approach, and SPA population size information is to
be used within the apportioning. This makes the approach attractive in relying less on further data that
carry extra assumptions.
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3. Discussion

This review builds on previous assessments and comparisons of methods such as Butler et al. (2020).
Here we consider six main methods for apportioning impacts of renewables back to breeding
populations. These include a very recent method of Sage (2022) but that at the time of writing has not
yet been published, and potential further use of GLS data for non-breeding season data. The various
advantages and disadvantages of the approaches are summarised in Table 2 below.

All methods reviewed here ingest population estimate data. Population size and proximity to
conspecifics were among the most important predictors found by Wakefield et al. (2017), making it
important to source reliable estimates of population size, and handle these data appropriately.
Population data will be particularly important for some species where survey coverage may vary
depending on the breeding habitat, for species such as large gulls for example where characterisation
of urban habitats is of potential concern and has been subject to recent further estimation since the
last seabird census (Burnell et al. 20204, b). Interpolation methods of Butler et al. (2020) can be used,
i.e. the UCC variant of the model, should more recent estimates be unavailable from some sites beyond
the Seabird 2000 survey.

Breeding season

All methods focused on the breeding season further require an estimation of foraging range, including
both the MSS tool of Butler et al. (2020) and the TDF method of Sage (2022). The breeding season
methods have some further general commonality in assuming an area- or distance-time approach for
quantifying a number of animals that may utilise a given space that can then be shared among colonies
believed to be in the vicinity of likely provenance. These are matters of establishing likely ‘connectivity’
between potential development areas and populations, such as SPAs. This is a straightforward task
where tracking data exist. This still means, however, that when making predictions, all methods assume
certain connectivity to other sites or colonies within the foraging range, or for the MSS tool, within the
range identified in predictive modelled surfaces. Verification of connectivity from further direct tracking
data for specific sites is always a useful endeavour and could be used to further validate the underlying
model assumptions, enabling greater certainty that apportioning methods have been assigned sensibly.

Among other shared aspects, the methods have a common disadvantage in being unable to fully
account for uncertainty in final propagated apportioning. The MSS tool goes part way to addressing
this by including consideration of varying sample size and how that affects uncertainty in the
percentage apportioning values but as stated by Butler et al. (2020), colony size uncertainty and the
error in the UDs from the Wakefield method could not be accounted for (see section 2.2.2). Potentially
the Sage (2022) method may be able to incorporate uncertainty in the TDF based on the species-level
modelled curves more explicitly. However, this method is at the stage of demonstration only having not
been directly applied.

However, the methods have a number of differences and particular key advantages and disadvantages.
The original SNH methods are among the most simplistic to apply during the breeding season and
would be useful in any apportioning study to trial alongside more advanced methods, to test and
understand the underlying distance-based decay assumptions involved. The SNH methods, however,
suffer a lack of biological realism and unquantified uncertainty, sacrificed in favour of simplicity. Indeed
more advanced methods could potentially feed those relationships back into the SNH tools.
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The MSS apportioning tool of Butler et al. (2020) is by far the most advanced of all the methods,
encompassing biological realism, and is based on the original Wakefield statistical framework, with
further extension through R scripts to apportioning; extensions of the tool are provided using more
recent population data, and further still inclusion of non-breeding space use from at-sea datasets
alongside breeding-season tracking datasets that give high value, widening flexibility in scope.
However, these advantages come at a price. The MSS tool has high computational overheads and
potential complexity when applied to new species that could also need alteration to the underlying
model and sourcing of new covariate information. Nonetheless, the value of this approach is worthwhile
applying across other species.

Non-breeding season

For the non-breeding season, the BDMPS method is at present the most widely used tool for the non-
breeding season. This method is straightforward — arguably more simple than the SNH apportioning
tools - and, should the existing BDMPS regions and seasonal definitions be used as in Furness (2015),
only needs population data, as well as the metric to be apportioned. Further complexity is introduced in
the EIA process for the specific effects being apportioned, such as displacement and collision risk that
carry further assumption and data requirements. The BDMPS, however, is highly prone to many
assumptions that are also acknowledged in Furness (2015), including the data feeding into initial
constructs of the BDMPS, but further, the areas themselves still represent homogenous units, that may
still be biologically unrealistic.

Further new methods may be possible using GLS data to better characterise area use of species during
the non-breeding period, which would bypass the use of BDMPS. The potential of these are explored
here but they are as yet untested and limited to where feasible for certain populations where such data
exist. Potentially the MSS tool variant BNB of the model could be useful alongside BDMPS in future
studies for the breeding season, i.e. for examining population components including breeders and non-
breeders as a potential comparison.
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4. Final conclusions and recommendations

This review has highlighted the strengths and weaknesses of the methods reviewed. The methods all
have merit and it was not possible to recommend one single way of carrying out apportioning, as much
will depend on the nature of the species and data available. The MSS tool, however, emerged as one
such method worthy of wider investigation, being based on the most biological realism of all methods.
At the time of writing no new species or time periods have been modelled following on from the
Wakefield method, but potentially more species could be investigated that have data available to fit the
MSS tool framework, such as northern gannet Morus bassanus, Manx shearwater Puffinus puffinus, and
species of gull, such as lesser black-backed gull. Combined with the UCC method of Butler et al. (2020)
for newer population data, and potentially new covariates, the use of the MSS tool would be valuable.
Using GLS data, such as those available for guillemot and razorbill, should be considered for
apportioning in the non-breeding season, in order to move away from some of the key assumptions
regarding colony provenance that are made in BDMPS.
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Table 2. Summary of the main data requirements, and strengths and weaknesses of each approach.

Data

Analytical

Biological

Non-breeding
BNB model

association and
population competition

effects; R code

new species may be studied
requiring re-running of
models; relies on covariate

Method Season Data inputs availability Complexity realism Advantages Disadvantages References
Linear distance is not
realistic for species that
. cannot cross land; decay
. Very simple to .
Foraging range . occurs homogenously in
SNH . . understand, quick to . . .
Tool Breeding | (e.g. from High Low Low radii, species foraging SNH (2014)
. apply and produce
tracking data) ranges may become
results .
outdated, or be less reliable
given lack of data; does not
account for uncertainty
Advantage over ) . )
. ] . As with previous tool i.e.
SNH Foraging range Low, but previous tool in not . . .
. ) o radii; species foraging range
Tool Breeding | (e.g. from High Low better than assuming linear o SNH (2018)
‘plus’ . ] ] ) criticisms; lack of
tracking data) previous distance, but distance .
uncertainty
by sea
Tracking data, o Good inclusion of Existing species maps
o o Very high, if o .
population size, | Medium, if . biological realism, become outdated, new
runnin
MSS Tool Brecdin covariates starting from modelz from . capturing populations may be tracked Butler et al.
eeding scratch High environmental over new time periods, or (2020)
scratch
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Method Season Data inputs Dat.a - Analytlca.l BloIfngcaI Advantages Disadvantages References
availability Complexity realism
includes at-sea High, if using Medium, if available to implement | data availability; imputation
aerial/boat data | existing data using existing the method; can of colony counts carries
for distributions models, but include non-breeding uncertainty in UCC variant;
still with birds; explicitly includes | assumptions made on
computational partial uncertainty covariate drivers and ratio of
cost assessment; flexible breeding/non-breeding birds
for three different in BNB method variant;
‘versions’ of the tool currently uses all behaviours
not just foraging; does not
account for uncertainty in
colony size or foraging
distribution
; i Largely untested. Processin
Medium, Medium, if f |g y f g g
i of large amounts of trackin
requires initial running from Simole.likel ; ) E icely still g
imple, likely rapid on ata but likely still at
tracking data if scratch P y p- ) ] y )
. the whole, and brings in | relatively low computational
) parameterising .
. Tracking data; . temporal component costs; simple method to
TDF Breeding . Medium . . Sage (2022)
foraging range for greater realism understand; still based on
o beyond just distance foraging ranges if applied to
High, if using Low. if usi . .
tina TOF £ Ow, Irusing metrics unobserved colonies;
existin or -
, g , existing assumes TDF is
a given species -
g P species’ TDF generalizable
BDMPS Er?ergd’ng Population Medium, may be Low Low Currently the ‘main’ BDMPS for each species, is Furness
i
sizes; for many sources approach for non- large, homogenous and (2015)
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Method Season Data inputs Dat.a - Analytlca.l BloIfngcaI Advantages Disadvantages References
availability Complexity realism
BDMPS various | but data quality breeding data, simple within each contains the
data used for and amounts to use and based on a same apportioning
defining, e.g. vary by species comprehensible proportions; expert
ringing, tracking; | and source spreadsheet judgement made in defining
ElA, further data areas; time static;
for specific assumption of temporal
effects, such as breeding phases; decisions
likely mortality taken on further effects from
data, CRM data wind farms in ElAs, such as
mortality rates, and further
lacks integration of
demographic realism; does
not account for uncertainty.
. Untested; limited by GLS
Potential use of actual : )
. . data available for species,
Medium, not | data on non-breeding o
) . o that may also be limited to
Low to medium, directly distribution rather than . ) o
GLS . ) ) ] certain colonies constituting
Non- GLS data, dependent on ) . linked to estimated spatial units )
methods breedin ) ) o Likely medium . . . potential -
g population size species’ having covariates, as in BDMPS; potential

available data

but improves
on BDMPS

to include uncertainty
within the modelling
workflow

sampling/geographical bias;
requires further definition of
the precise analytical tools
to be used.
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